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Abstract

A phase-field model is developed to study the cubic to monoclinic martensitic phase transformation in nickel–titanium (NiTi) shape
memory alloys. Three-dimensional phase-field simulations show the nucleation and growth of monoclinic B190 multivariants that form a
polytwinned martensitic microstructure. Parametric studies demonstrate that mechanical constraints and crystallographic orientation
govern the patterning of martensitic twin variants in the formation of strain-accommodating microstructures. Pairing of twin variants
is studied by comparing the phase-field simulation results with the crystallographic solutions of compatible twins. The phase-field method
developed in this work is generally applicable to simulate the dynamic microstructure evolution of metals and alloys that produce low-
symmetry phases through martensitic transformation.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nickel–Titanium (NiTi) is the most widely used shape
memory alloy [1–4]. Its shape memory effect is primarily
governed by the martensitic phase transformation between
the cubic B2 (austenite) and the monoclinic B190 phase
(martensite) [5]. Understanding the mechanism of martens-
itic transformation in NiTi is essential to controlling and
optimizing its shape memory behavior.

The martensitic phase transformation in NiTi has been
studied by a variety of modeling methods. The continuum
models are usually focused on the crystallography and
compatibility of the phase transformation and twin
microstructure [6–8]. First-principles calculations are well
suited to investigating the atomic-level structures and their
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stabilities, as well as phase-transformation pathways
[9–13]. Atomistic studies based on empirical interatomic
potentials can explore the phase transformation and
martensitic microstructure in systems larger than those
accessible by first-principles methods [14–18]. However,
both first-principles and interatomic-potential-based stud-
ies are severely limited by the spatial and temporal scales
that are achievable. Such limitations can be alleviated by
use of the phase-field model, which is particularly suited
to studying the dynamic evolution of martensitic micro-
structures [19–24].

The NiTi system generally involves a variety of metasta-
ble phases (B2, B19, B190, R, etc.), martensite variants (e.g.
12 variants in the B190 phase) and twin structures (such as
type I, II and compound twins). Such phase and structure
complexities pose significant challenges to computational
modeling. Nevertheless, progress has been recently made
in the development of phase-field models for the NiTi sys-
tem. For example, Shu and Yen developed a multivariant
eserved.
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model to study the martensitic microstructure of the R
phase [25]. Yang and Dayal proposed a simple energy func-
tion to describe the B190 multivariants [26]. Both models
assumed the penalty-based energy function and were
applied to two-dimensional (2-D) phase-field simulations.
However, the phase-field model with a physics-based
Landau-type energy function is still not available. The
Landau-type polynomial energy function is favored in the
phase-field model, because it can facilitate a direct link
between the model parameters and physical properties such
as undercooling temperature [19] and defect energy [27]. It
is, however, non-trivial to construct a Landau-type polyno-
mial energy function to characterize the martensitic trans-
form to low-symmetry phases. In the case of NiTi, this is
due to the difficulty of representing the 13 coexisting meta-
stable energy wells on the system energy landscape, which
respectively correspond to the cubic B2 phase and 12
monoclinic B190 variants. Meanwhile, other metastable
energy wells should be eliminated to avoid the interference
of physically irrelevant states. In this work, we construct an
effective Landau-type polynomial energy function and
perform 3-D phase-field simulations of the B2–B190 phase
transformation. The results reveal the nucleation and
growth of polytwinned morphology of martensitic micro-
structures. The effects of mechanical constraints and crys-
tallographic orientation on the patterning of multivariants
in the formation of strain-accommodating microstructures
are investigated.

2. Phase-field model

We take a single crystal of B2 austenite as the starting
configuration. This parent austenitic phase can transform
to B190 martensite when the temperature is reduced below
the martensite start temperature. The phase-field model
provides the solutions of the temporal evolution of phases
and microstructures by numerically solving the time-
dependent partial differential equations of field variables.
Twelve continuous field variables {g1, . . . , g12} between 0
and 1 are defined to describe the B2–B190 transformation,
which involves one cubic B2 phase and 12 monoclinic
B190 variants. The austenitic B2 phase corresponds to the
case of g1 = � � � = g12 = 0. Variant i of the martensitic
B190 phase is represented by gi = 1 and gj = 0 for all j – i.

The stress-free strain, which arises from local phase
transformation, can be described as:

e�ðxÞ ¼
X12

i¼1

giðxÞe0
i ; ð1Þ

where e� (x) is the stress-free strain at a spatial position x,
and e0

i is the strain of the complete transformation from B2
to B190 for variant i.

The free energy of the system, F, can be described by the
volume integral of three free energy densities, including
local (chemical) energy density flocal, gradient energy den-
sity fgrad, and elastic strain energy density fel:
F ¼
Z

V
ðflocal þ fgrad þ felÞdV : ð2Þ
2.1. Local free energy

The local free energy density flocal is governed by the
bulk thermodynamic properties of the system. A Landau-
type polynomial is used to represent flocal as follows:

flocal ¼ f0 þ Df ðT Þ 1
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where f0 is the free energy density of the austenitic phase
and can be set as zero, Df(T) is the difference of the free
energy density between austenite and martensite that
depends on temperature T, and A, B, C and D are con-
stants characterizing the shape of the free energy density
function flocal. Note that parameters A, B, C and D cannot
be arbitrarily assigned, and three constraints must be satis-
fied. Firstly, the partial derivative of flocal with respect to
the field variables {g1, . . ., g12} must be zero when
g1 = � � � = g12 = 0, or gi = 1 and gj = 0 for all j – i, such
that the austenitic and martensitic phases correspond to
local energy minima. Secondly, the difference in the free
energy density between austenite and martensite should
be Df(T). These two requirements lead to:

�Aþ B� C � D ¼ 0
1
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A� 1
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Bþ 1
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C þ 1

4
D ¼ �1

(
: ð4Þ

In this work we choose to represent flocal with the following
set of parameters A = 1, B = 15, C = 7 and D = 7, which
provide physically reasonable phase-field results for mar-
tensitic microstructure evolution. The driving force on each
field variable gi associated with flocal is given by:

F local
i ¼ � @flocal

@gi

¼ Df ðT Þ �Agi þ Bg2
i � Cgi

X12

j¼1

g2
j

 !
� Dg3

i

( )
: ð5Þ

Thirdly, the B2 phase should be a thermodynamically
metastable state. This requirement is related to the choice
of Df(T) and will be examined later.

2.2. Gradient energy

The gradient energy density fgrad is the nonlocal part of
the chemical free energy density, which characterizes the
energy of the interface between neighboring twin variants.
We express fgrad in terms of the gradient of field variables:

fgrad ¼
1

2

X12

p¼1

bijðpÞ
@gp

@xi

@gp

@xj
; ð6Þ
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where the Einstein summation convention is applied only
for index i and j. In Eq. (6), the coefficients bij(p) are the
components of a semipositive definite tensor; they are not
necessarily the same among different field variables gp,
and may be anisotropic depending on the direction of the
gradient given by partial derivatives with respect to spatial
coordinates xi and xj. In order to capture the essential
physical effects of phase transformation and microstructure
evolution with reduced numerical complexity, isotropic
gradient energy is assumed in this work. Namely, we take
bij(p) = bdij, where dij is the Kronecker delta. It follows that
Eq. (6) is reduced to:

fgrad ¼
1

2

X12

p¼1

bjrgpj
2
: ð7Þ

The driving force on each field variable gi associated with
fgrad is [25]:

F grad
i ¼ br2gi: ð8Þ
2.3. Elastic energy

The elastic energy density fel is given by:

fel ¼
1

2
ðe� e�ÞTCðe� e�Þ; ð9Þ

where e = (e11, e22, e33, 2e23, 2e31, 2e12)T is the total strain,
and e� ¼ ðe�11; e

�
22; e

�
33; 2e�23; 2e�31; 2e�12Þ

T is the stress-free strain
of phase transformation, and C is the 6 � 6 stiffness matrix
in the Voigt notation. The constitutive equation can be
derived from Eq. (9) with the stress given by:

r ¼ ðr11; r22; r33; r23; r31; r12ÞT ¼ Cðe� e�Þ: ð10Þ
The driving force acting on each field variable gi associated
with fel is:

F el
i ¼ �

@fel

@gi
¼ ½Cðe� e�Þ�T @e

�

@gi
¼ rT @e

�

@gi
: ð11Þ

In this work, we study the boundary conditions under
either applied strain and/or zero applied stress (ra = 0),
such that the term involving the applied traction vanishes.
Both the total strain e and stress r can be solved using the
technique of Fourier transform, and the detailed formulas
are derived in the Appendix A.

2.4. Phase-field equation

The evolution of the phase field is governed by the time-
dependent Ginzburg–Landau (TDGL) equation, which is a
stochastic phase-field kinetic equation based on the
assumption that the rate of change of field variables is pro-
portional to the thermodynamic driving force:

@gi

@t
¼
X12

j¼1

bLij F local
j þ F grad

j þ F el
j

� �h i
þ niðx; tÞ; ð12Þ

where bLij is the matrix of kinetic coefficients, and ni(x, t) is
the Langevin noise term which follows the normal
distribution and is mutually independent at different loca-
tions and times. To satisfy the requirement of the fluctua-
tion–dissipation theorem [19], the correlation of ni(x, t) is
given by:

hniðx; tÞnjðx0; t0Þi ¼ 2kBT bLijdijdðx� x0Þdðt � t0Þ; ð13Þ

where kB is the Boltzmann constant and d is the Dirac delta
function. For simplicity, the kinetic coefficient bLij is
assumed diagonal, i.e. bLij ¼ Ldij, with the assumption that
the driving force on each field variable gi does not affect the
evolution of field variable gj when i – j. Substitution of
Eqs. (5) and (8) into Eq. (12) yields:
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2.5. Numerical simulation

The phase-field simulations are performed in a 3-D
cubic cell, subjected to periodic boundary conditions in
all three directions. We discretize the 3-D cell into uniform
grids and the time into equal steps. All of the field variables
at time step n are represented in the form of gn

i ðx; nDtÞ for
i = 1, . . ., 12, where Dt denotes the time step size. It is con-
venient to normalize the length and time scales, thereby
eliminating the unnecessary parameters. We define the
dimensionless space coordinate ex1 ¼ x1=l0, ex2 ¼ x2=l0 andex3 ¼ x3=l0, where l0 is the size of the grid cell, and the
dimensionless time et ¼ tLDf ðT Þ and Det ¼ DtLDf ðT Þ. It fol-
lows that Eq. (14) is normalized as:
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where er2 ¼ @2

@ex2
1

þ @2

@ex2
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þ @2
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3

, eb ¼ b
Df ðT Þl2

0

and eniðex; tÞ
¼ 1

LDf ðT Þ niðex; tÞ. The random variable eniðex; tÞ, which is

mutually independent at different space coordinates and
time steps, follows the normal distribution with the mean

of zero and the variance of 2kBT
Df ðT Þl3

0

.

To solve a partial differential equation of the heat-
equation type by numerical integration, one can typically
apply the forward Euler (explicit) method, the backward
Euler (implicit) method or the Crank–Nicolson (implicit)
method. The nonlinear terms, i.e. the first and third terms
in Eq. (15), pose a computational challenge to either the
backward Euler or the Crank–Nicolson method. On the
other hand, the stability condition of the forward Euler
method due to the Laplace operator limits the time step
size Det � Dex2. To overcome these difficulties, we use the
semi-implicit Fourier-spectral method proposed by Chen
and Shen [21] which provides an efficient and accurate
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solution for the TDGL equation. The key of this semi-
implicit method is to calculate the Laplace term implicitly
and the nonlinear terms explicitly, such that Eq. (15) can
be discretized as:

gnþ1
i � gn

i

Det ¼ F local
i ðgnðx; nDetÞÞ

Df ðT Þ þ eb er2gnþ1
i ðx; ðnþ 1ÞDetÞ�

þ F el
i ðgnðx; nDetÞÞ

Df ðT Þ

�
þ eniðex; ðnþ 1ÞDetÞ: ð16Þ

It is computationally efficient to solve Eq. (16) in the
Fourier space, so as to avoid the inverse Fourier transfor-
mation of stress. To this end, the Laplace operator is
transformed to �4pðs2

1 þ s2
2 þ s2

3Þ in Fourier space, where
s = (s1, s2, s3)T is the coordinate in Fourier space. Eq.
(16) can be transformed to:
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i þ
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i ðgnÞ

�
ð17Þ
2.6. Model parameters

In Eq. (1), the stress-free strains of the B2–B190 transfor-
mation are described by 12 field variables {g1, . . ., g12} that
represent 12 B190 variants, respectively. When the global
Cartesian coordinate system is aligned with the cubic axes
of the parent B2 phase, the 12 transformation strain ten-
sors e0

i (i = 1, . . ., 12) in Eq. (1) are given by:
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The components of e0
i in Eq. (18) have been calculated by

Hane and Shield [7] using the lattice constants given by
Otsuka et al. [5], i.e. h = �0.0437, r = 0.0243,
q = �0.0427 and s = 0.0580. When the global Cartesian
coordinate system is not aligned with the cubic axes of
the parent B2 phase, a rotation operation of Re0

i RT is
required, where R is the rotation matrix.

The elastic constant matrix C is taken from the density
functional calculations by Hatcher et al. [10], i.e.
C11 = 183 GPa, C12 = 146 GPa and C44 = 46 GPa. The
typical strain energy density, which scales with e0T

1 Ce0
1, is
�4.403 � 108 J m�3. We take Df(T) to be 10% of the strain
energy, i.e. Df(T) = 4.403 � 107 J m�3. A simple linear rela-
tion between Df(T) and the undercooling temperature DT is
assumed [19]:

Df ðT Þ ¼ Q
DT
T 0

: ð19Þ

In Eq. (19), the latent heat is taken as Q = 110 MJ m�3 and
the equilibrium temperature as T0 = 271 K [28], so that the
undercooling temperature is about DT = 108 K given the
above assigned value of Df(T).

In Section 2.1, we note that the local free energy density
flocal should satisfy the physical requirement that the B2
phase is a thermodynamically metastable state. From Eq.

(3), one obtains @2flocal

@g2
i
¼ Df ðT ÞðA� 2Bgi þ 3Cg2

i þ 3Dg2
i Þ

when gj = 0 for all j – i. To represent the B2 phase, gi

has to be zero as well, such that @2flocal

@g2
i

���
gi¼0
¼ Df ðT ÞA. Since

both Df(T) and A are taken as positive values, it follows

that @2flocal

@g2
i

���
gi¼0

> 0, thereby showing that the B2 phase is a

thermodynamically metastable state in our phase-field
model.

The interfacial energy density c (i.e. interfacial energy
per unit area) is related to the coefficient b in Eq. (7)

according to c ¼ 4
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bDf ðT Þ

p
[29]. We use the normalized

interfacial energy coefficient eb in Eq. (15). It follows that

the grid size becomes l0 ¼ 3c

4Df ðT Þ
ffiffiffiffi
2ebp , where c is taken as

the interfacial energy density of type I twin, 187 mJ m�2

[13].
The time step needs to be carefully chosen to ensure the

convergence of numerical integration. By trial and error,
we find that Det ¼ 0:01 provides reasonable accuracy and effi-
ciency. The numerical integration is performed up to 12,500
time steps (i.e.et ¼ 125), and selected simulations with longer
times show no further change in the microstructures.

3. Results and discussion

3.1. Microstructure evolution

To study the nucleation and growth of martensitic
microstructures, we first conduct a phase-field simulation
under a mixed loading condition: zero in-plane strain and
zero out-of-plane stress, i.e. ea

1 ¼ ea
2 ¼ ea

6 ¼ 0 and
ra

3 ¼ ra
4 ¼ ra

5 ¼ 0. Such boundary conditions correspond
to a thin film subjected to rigid constraints from the sub-
strate. The global Cartesian coordinate system is aligned
with the cubic axes of the parent B2 phase, as shown in
Fig. 1. The system contains 64 � 64 � 64 mesh grids. We

set eb ¼ 2, so that l0 ¼ 3c

4Df ðT Þ
ffiffiffiffi
2ebp ¼ 1:6 nm and accordingly

the simulation cell has a side length of �102.4 nm.
Given the positive value of Df(T), the martensitic trans-

formation of B2!B190 is energetically favored. However,
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Fig. 1. A 3-D phase-field simulation result of martensitic transformation from B2 to B190, showing the formation of polytwinned microstructure. (a)
Time-lapse snapshots showing the nucleation and growth of twinned B190 structures. The mesh grids are colored by the value of
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different twin variants. (b) 2-D projections of the 3-D microstructure at et ¼ 125. The actual simulation cell, as shown in (a), is periodically doubled in the
two in-plane directions in (b), in order to provide a clear visualization of the polytwinned structure. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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owing to the metastable state of the B2 phase, the martens-
itic transformation would not occur spontaneously, thus
requiring thermal fluctuations to assist the nucleation of
martensite. The Langevin noise term ni(x, t) in Eq. (12)
plays a role in thermal fluctuations. This stochastic term
is independent of each other at different time steps or spa-
tial locations, and thus does not provide any constraint on
the phase-transformation process. It is turned off after 3000
simulation steps when et ¼ 30.

Fig. 1a shows the nucleation and growth of martensite,
resulting in a polytwinned microstructure. At et ¼ 8, the
martensite precursors form, driven by the positive Df and
facilitated by thermal fluctuations. Colors represent differ-
ent values of field variables gi. Appearance of multiple col-
ors indicates the nucleation of multivariants. At this stage,
none of the field variables gi is close to 1 and thus no B190

variant is fully formed. However, the field variables also
deviate from all-zero values (the metastable B2 phase).
These martensite precursors cause lattice distortion, as evi-
denced by the increase of local elastic energy. They form
and disappear during this early stage. The microstructure
further evolves from the existing lattice distortion pro-
moted by thermal fluctuations, when the stochastic noise
terms are turned off at et ¼ 30. At et ¼ 32, shortly after



Table 1
Pairing of twin variants from crystallography theory and the phase-field
simulation in Fig. 1.

Twin pair Theoretical solution [7] Phase field

{2:6} {110} type I {110}
{1:8} {110} type I {110}
{1:2} {110} compound {110}
{6:8} {100} type I {110}
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the turn-off of stochastic noise terms, nuclei with sizes
around tens of nanometers are generated. The boundaries
of nuclei are curved and no obvious laminate twin structure
is visible. The growth and elimination of these nuclei are
driven by the dynamic changes of local free energy, gradi-
ent energy and elastic energy that collectively lower the
total energy of the system. The laminate twin pattern first
emerges at et ¼ 60, when several nuclei, colored red, blue
and green, grow into different twin variants. Other nuclei
disappear at et ¼ 85. Soon after, the twin pattern becomes
stable at et ¼ 90, while the twin boundaries are still not flat.
Finally, at et ¼ 125, the 3-D twin microstructure consisting
of four different B190 variants forms with the respective
transformation strain of e0

1; e
0
2; e

0
6 and e0

8. Fig. 1b shows
the top and left-side view of the 3-D polytwinned micro-
structure at et ¼ 125 .

Given the above polytwinned microstructure, it is neces-
sary to examine whether the multivariants are geometri-
cally compatible with the prescribed boundary condition,
as well as satisfy the geometric compatibility at each indi-
vidual twin boundary. From a consideration of the energet-
ics, the transformation from austenite to martensite lowers
the local (chemical) energy. Regarding the strain energy,
we note that the total strain e, transformation strain e*

and stress r can be decomposed into the homogeneous
and inhomogeneous components, as defined in the
Appendix A. It follows that the homogeneous part of the strain
energy can be minimized by adjusting the volume fractions
of multivariants to accommodate the applied boundary
condition. On the other hand, the nucleated martensite
variants form twins, such that the heterogeneous part of
the strain energy can be minimized if the compatibility
requirements are fully satisfied at twin boundaries. To
check the compatibility with the prescribed boundary con-
dition in phase-field simulations, we estimate the average
transformation strain of the final state atet ¼ 125 by assum-
ing equal volume fractions of the four variants:

ðe0
1 þ e0

2 þ e0
6 þ e0

8Þ=4 ¼
�0:01 0 0

0 �0:01 0:0504

0 0:0504 0:0243

0B@
1CA:
ð20Þ

Eq. (20) indicates that each in-plane component of the
average transformation strain is small with �1% compres-
sive normal strain and zero shear strain, and thus satisfies
approximately the applied boundary condition of zero in-
plane strain: ea

1 ¼ ea
2 ¼ ea

6 ¼ 0.
We next examine the geometrical compatibility of vari-

ants at twin boundaries by comparing the phase-field
results with the theoretical crystallographic solutions tabu-
lated by Hane and Shield [7]. In Fig. 1 the observed twin
planes between each pair of variants {2:6}, {1:8}, {1:2}
and {6:8} are all of the {110} type, as summarized in
Table 1. Three of the four pairs are consistent with the
crystallographic solutions of type I twin in NiTi, except
the {6:8} pair whose violation of compatibility at the twin
interface increases the heterogeneous strain energy. How-
ever, the emergence of such an incompatible twin pair is
geometrically necessary for accommodating the other three
twin pairs, so as to reduce the overall energy of the system.
Generally, theoretical solutions based on the principle of
geometric compatibility at twin interfaces [7] provide a
guide for selecting twin pairs when the applied stress is
zero. However, under the boundary conditions such as
applied strain/displacement, there might be no “perfect”
solution which is fully compatible at all the twin interfaces
and hence minimizes the local (chemical) free energy and
the homogeneous and heterogeneous strain energies simul-
taneously. In other words, the compatibility condition is
not always guaranteed at every twin interface in realistic
microstructures [5], as shown in our phase-field
simulations.

The martensitic phase transformation in a complex sys-
tem such as NiTi could yield a non-unique final product.
We repeat the phase-field simulation with all the parame-
ters unchanged to explore different possible microstruc-
tures. Different polytwinned structures arise due to the
stochastic effect of the Langevin noise term ni(x, t) in Eq.
(12). Fig. 2a shows another phase-field simulation result
of martensite nucleation and microstructure evolution,
which contrasts with those in Fig. 1a. As seen from
Fig. 2a, the precursors of martensite initially form and dis-
appear at et ¼ 20, similar to Fig. 1a. At et ¼ 50, martensitic
nuclei form and merge with others containing the same
type of twin variant, and finally form a polytwinned struc-
ture at et ¼ 125. This final state consists of four different
B190 variants with the basis transformation strain e0

2; e
0
4; e

0
5

and e0
6, respectively. In this case, the twin interfaces are par-

allel to the side faces of the simulation cell, in contrast to
the inclined ones in Fig. 1a. The top view of the 3-D poly-
twinned structure is shown in Fig. 2b. For the {2:6} and
{4:5} pairs, their twin planes are of the {110} type, while
the other two pairs have twin planes of the {100} type,
as summarized in Table 2. Similar to the result in Fig. 1,
compatibility is not satisfied for the {5:6} pair, while the
other three pairs are geometrically compatible at the
respective twin interface. Likewise, the average transforma-
tion strain of variants 2, 4, 5 and 6 at et ¼ 125 is estimated
by assuming the equal volume fractions of four variants:

ðe0
2þ e0

4þ e0
5þ e0

6Þ=4¼
�0:01 0 0:0504

0 �0:01 0

0:0504 0 0:0243

0B@
1CA: ð21Þ
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Fig. 2. A different phase-field simulation result of polytwinned microstructure under the same boundary condition as Fig. 1. (a) Time-lapse snapshots
showing the nucleation and growth of twinned martensite. (b) 2-D projection of the 3-D microstructure at et ¼ 125. The same schemes of coloring and 2-D
periodic doubling are used as in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Pairing of twin variants from crystallography theory and the phase-field
simulation in Fig. 2.

Pair Theoretical solution [7] Phase field

{2:4} {100} type I {100}
{2:6} {110} type I {110}
{4:5} {110} type I {110}
{5:6} {110} compound {100}
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Eq. (21) indicates that each in-plane component of the
average transformation strain is small with �1%
compressive normal strain and zero shear strain, and thus
approximately satisfies the applied boundary condition of
zero in-plane strain ea

1 ¼ ea
2 ¼ ea

6 ¼ 0.
It is interesting to note that repeated simulations with

the same applied boundary condition always result in the
selection of four variants from the candidate variants 1–
8, but not 9–12. This is because the in-plane transformation
strains among variants 1–8 can render one tensile and one
compressive component, as shown in Eq. (18); they cancel
each other to reduce the averaged in-plane transformation
strain, so as to lower the strain energy, as shown by Eqs.
(20) and (21).

3.2. Loading effect

The mechanical loading dictates the patterning of multi-
variants in the formation of strain-accommodating micro-
structures. We next explore different combinations of
boundary constraint. Here the cubic simulation cell
contains 32 � 32 � 32 mesh grids, eb is adjusted to be 0.5

and l0 ¼ 3c

4Df ðT Þ
ffiffiffiffi
2ebp ¼ 3:2 nm. Correspondingly, the side

length of the cell is 102.4 nm.
Fig. 3a and b show two possible microstructures when

the in-plane biaxial tensile strain is applied, i.e.
ea

1 ¼ ea
2 ¼ 1% , ea

6 ¼ 0 and ra
3 ¼ ra

4 ¼ ra
5 ¼ 0. In Fig. 3a,

variants 9 and 12 form the {10 0} twin; in Fig. 3b, variants
10 and 11 form the {11 0} twin, as listed in Table 3. The
transformation strain tensors associated with variants 9,
10, 11 and 12 belong to the group that shares the same nor-
mal components, but involves both in-plane tension and
out-of-plane compression, as shown in Eq. (18). This group
of transformation strain tensors can better match the
imposed biaxial tensile strain. Pairing of variants in this
group yields the self-accommodating twin structures
through a complete cancellation of in-plane shear strains.
Repeated simulations invariably select the variants in the
group containing variants 9, 10, 11 and 12. In most cases,
twin compatibility is satisfied through, for example, forma-
tion of the {100} twin between variants 9 and 12, as shown
in Fig. 3a. However, exceptions are observed, such as the
{110} twin of variants 10 and 11, as shown in Fig. 3b
and Table 3. Selection of these twin pairs can also be
understood in terms of the accommodation of the applied
boundary condition, as discussed earlier. Recall that when
the zero in-plane strain is applied in Section 3.1, only vari-
ants 1–8 can nucleate because the in-plane normal strain
components contain both tension and compression. We
also perform simulations when the in-plane biaxial
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Fig. 3. Formation of polytwinned martensitic microstructures under different applied boundary conditions. The mesh is colored to distinguish different
B190 variants. (a and b) Two different microstructures form under in-plane biaxial tension ea

1 ¼ ea
2 ¼ 1%, ea

6 ¼ 0 and ra
3 ¼ ra

4 ¼ ra
5 ¼ 0. (c and d) Two

different microstructures form under out-of-plane compression ea
3 ¼ �2% and ra

1 ¼ ra
2 ¼ ra

4 ¼ ra
5 ¼ ra

6 ¼ 0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Pairing of twin variants from crystallography theory and the phase-field
simulation in Fig. 3.

Twin pair Theoretical solution [7] Phase field

{9:12} Fig. 3a {100} type I {100}
{10:11} Fig. 3b {100} type I {110}
{10:12} Fig. 3c {100} type I {100}
{9:10} Fig. 3d {110} compound {110}
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compression is applied. The resulting microstructures are
identical to those in Figs. 1 and 2. These results can be sim-
ilarly understood by the requirement to accommodate the
imposed boundary condition.

Fig. 3c and d show the phase-field result when the out-
of-plane compressive strains are applied, i.e. ea

3 ¼ �2% and
ra

1 ¼ ra
2 ¼ ra

4 ¼ ra
5 ¼ ra

6 ¼ 0. Such loading mode of out-of-
plane compression yields the results similar to those under
in-plane biaxial tension as shown in Fig. 3a and b. This is
because the two loading modes essentially differ by a
hydrostatic stress that plays a minor role in the selection
of twin variants. As a result, the same group containing
variants 9, 10, 11 and 12 is the optimal choice, producing
the {100} twin between variants 10 and 12, and the
{11 0} twin between variants 9 and 10, as listed in Table 3.
3.3. Orientation effect

In this section, we study the orientation effects on the
formation of polytwinned martensitic microstructures. In
the example plotted in Fig. 4, the global Cartesian coordi-
nate system is aligned with the h110i, h001i and h1�10i
directions of the parent B2 phase. In this case, the rotation
of the transformation strain tensor Re0

i RT is required with
the rotation matrix given by:

R ¼
0:707 0:707 0

0 0 1

0:707 �0:707 0

264
375: ð22Þ

In addition, the elastic modulus tensor given in the cubic
crystal system should be transformed to the global coordi-
nate system by rotation [27] and then cast into the 6 � 6
stiffness matrix C in the Voigt notation.

Fig. 4a1 shows the simulated polytwinned microstruc-
ture under an in-plane biaxial compressive strain of 0.5%;
the system is stress free in the vertical direction. The
{110} twin between variants 11 and 12 is formed. Variants
11 and 12 cancel the shear transformation strain of each
other, and also provide the in-plane transformation strain
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Fig. 4. Formation of polytwinned martensitic microstructures under different applied boundary conditions. (a1) {110} compound twin forms under an in-
plane biaxial compressive strain of 0.5% and the system is stress free in the vertical direction. (a2) Atomic structures of {110} compound twin from a
previous molecular statics simulation [16]. The green unit cells of Ni atoms (blue) exhibit tilting of the monoclinic phase, and obey the mirror-reflection
condition with respect to the twin boundary (dashed line). In contrast, the white unit cell of Ti atoms (red) straddles the twin plane and retains a
rectangular shape. (b) Layered twin lamellae form under an in-plane biaxial tensile strain of 1% and the system is stress free in the vertical direction. (c)
Polytwinned structures form under a compressive strain of 2% in the vertical direction; all other stress components are zero. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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of biaxial compression, thus accommodating the imposed
mechanical load. The {110} twin between variants 11
and 12 is the so-called compound twin [7], as the crystallo-
graphic directions of both the twin plane and twin shear
are rational.

Previously, we have conducted the interatomic-potential-
based molecular statics and dynamics simulations to
study the structure of compound twins [16]. Fig. 4a2 shows
an example of the atomic configuration of a compound
twin in a supercell under periodic boundary conditions. It
is the same type of compound twin as the one in
Fig. 4a1, with the twin boundary aligned with the
{11 0}B2 plane in the B2 basis, which corresponds to the
equivalent {010}B19 plane in the B19 basis. This atomistic
study complements the continuum phase-field simulation
by providing atomic-level structural details of the twin
boundary. For example, Fig. 4a2 shows that the twin
boundary is atomically sharp, and the mirror reflection of
atoms at the twin boundary can be clearly resolved to com-
pare with high-resolution transmission electron microscopy
images, as described in detail in Ref. [16]. Furthermore,
from the standpoint of multiscale modeling, one can link
the atomistic and continuum phase-field simulations. For
example, the atomic-level geometry such as the thickness
of the atomically sharp phase boundary as revealed in
Fig. 4a2, in conjunction with the atomistically calculated
twin boundary energy, can provide a quantitative calibra-
tion of the gradient coefficients in the phase-field model,
i.e. bij in Eq. (6). Such an atomistically informed phase-field
approach is beyond the scope of this work, but warrants
further study in future.

To demonstrate the loading effect, Fig. 4b shows the
simulated polytwinned microstructure under an in-plane
biaxial tensile strain of 1%; the system is stress free in the
vertical direction. Variants 2, 3, 6 and 7 form {100} twins.
The corresponding twin pairs are listed in Table 4. Selec-
tion of variants 2, 3, 6 and 7 is still dictated by the applied
biaxial tension, because they are the only four variants
whose in-plane components of transformation strain ten-
sors Re0

i RT render the biaxial elongation. Moreover, the
shear component of the average transformation strain is
also minimized:



Table 4
Pairing of twin variants from crystallography theory and the phase-field
simulation of biaxial tension in Fig. 4b.

Twin pair Theoretical solution [7] Phase field

{2:3} {100} type I {100}
{3:6} {110} type I {100}
{6:7} {100} type I {100}
{7:2} {110} type I {100}

Table 5
Pairing of twin variants from crystallography theory and the phase-field
simulation of biaxial tension in Fig. 4c.

Twin pair Theoretical solution [7] Phase field

{2:3} {100} type I {100}
{2:6} {110} type I {110}
{3:7} {110} type I {110}
{6:7} {100} type I {100}
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Rðe0
2 þ e0

3 þ e0
6 þ e0

7ÞRT=4 ¼
0:033 0 0

0 0:0243 0

0 0 �0:0524

0B@
1CA:
ð23Þ

In addition, Fig. 4c shows the polytwinned microstructure
formed when the applied compressive strain is 2% in the
vertical direction and all other stress components are zero.
Similarly, variants 2, 3, 6 and 7 form, although the poly-
twinned structure is different from the one in Fig. 4b. As
summarized in Table 5, variant pairs {2:3} and {6:7} form
the {100} twin; while {2:6} and {3:7} form the {110} twin.
All the compatibility requirements at the twin boundary
are satisfied.

4. Conclusion

We have developed a phase-field model to study the
diffusionless cubic to monoclinic martensitic phase trans-
formation in NiTi shape memory alloys. A Landau-type
free energy function is constructed to characterize the
martensitic transformation from the cubic B2 phase to a
low-symmetry phase of monoclinic B190 with 12 variants.
3-D phase-field simulations reveal the nucleation and
growth of B190 multivariants that form the polytwinned
microstructures. The simulation results are analyzed in
terms of the overall accommodation of applied boundary
conditions, which reduces the homogeneous strain energy,
as well as the local twin compatibility, which lowers the
heterogeneous strain energy. In particular, our simulations
demonstrate the difficulty of attaining the “perfect”
polytwinned microstructure where the theoretical crystallo-
graphic solution of twin compatibility is satisfied ideally at
every twin boundary. Further parametric studies of the
loading and orientation effects show the versatility/
non-uniqueness of the formation of polytwinned micro-
structures, where the patterning of martensitic
multivariants can be interpreted in terms of the need to
accommodate the applied strain. The present phase-field
model provides a flexible framework to study the dynamic
microstructure evolution during the martensitic transfor-
mation to low-symmetry phases.
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Appendix A. Solving strain and stress in the Fourier space

One can solve the total strain e and stress r through the
Fourier transform of the equilibrium equation. To this end,
we define a differential operator [25]:

A ¼

@
@x1

0 0 0 @
@x3

@
@x2

0 @
@x2

0 @
@x3

0 @
@x1

0 0 @
@x3

@
@x2

@
@x1

0

0BB@
1CCA

T

; ðA1Þ

where x1, x2 and x3 are the spatial coordinate. The geomet-
ric equation of strain can then be represented as:

e ¼ Au; ðA2Þ
where the displacement vector is u = (u1, u2, u3)T and each
of its component is a function of x1, x2 and x3. It follows
that the equilibrium equation can be written as:

ATr ¼ 0: ðA3Þ
It is non-trivial to obtain the analytical solution of Eqs.
(10), (A2), and (A3) for generally prescribed boundary con-
ditions. Instead, these equations can be discretized and
solved numerically. Direct numerical solution of Eqs.
(10), (A2), and (A3) is computationally inefficient, since a
set of partial difference equations for the whole field needs
to be satisfied at each time step. However, for the problem
with periodic boundary conditions, the semi-implicit algo-
rithm originally developed by Chen and Shen [21] can sig-
nificantly improve the computational efficiency by applying
fast Fourier transformation (FFT). In this scheme, the dif-
ferential equations are transformed to mutually indepen-
dent linear equations at different mesh nodes. In this
Appendix A, we present the detailed formulation and pro-
cedure of solving the equilibrium equations with the FFT
method by partially following the approach introduced
by Shu and Yen [25].

The total strain e, transformation strain e* and stress r

are decomposed into homogeneous and inhomogeneous
components:

e ¼ hei þ e0; where hei ¼
Z

V
edV ðA4Þ

and

e� ¼ he�i þ e�0; where he�i ¼
Z

V
e� dV : ðA5Þ

One can further decompose the total displacement u into
homogeneous and inhomogeneous components:
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u ¼ hui þ u0 satisfying hei ¼ Ahui and e0 ¼ Au0: ðA6Þ
Note that the homogeneous component hui is a linear func-
tion of x because the homogeneous strain hei is a constant.
Although the decomposition in Eq. (A6) is not unique with
a constant plus a rigid body rotation, it will not affect the
result in which we are interested because we will only use
the differential form of displacement u0.

Substitution of Eqs. (A4) and (A5) into Eq. (10) yields:

r ¼ Cðe� e�Þ ¼ Cðhei � he�iÞ þ Cðe0 � e�0Þ
¼ hri þ r0; ðA7Þ

where the homogeneous stress is defined as:

hri ¼ Cðhei � he�iÞ ðA8Þ
and the inhomogeneous stress is:

r0 ¼ Cðe0 � e�0Þ: ðA9Þ
In each simulation time step, once the field variables

{g1, . . ., g12} are known, e* can be directly calculated from
Eq. (1), so that it is straightforward to calculate he*i from
Eq. (A5). The applied boundary conditions can be given by
either hei = ea or hri = ra, or a mixed type. Together with
Eq. (A8), all the homogeneous components hei and hri can
be obtained.

The equilibrium equation of r0 remains the same form:

ATr0 ¼ 0: ðA10Þ
Substituting Eq. (A6) into Eqs. (A9) and (A10), we obtain
the partial differential equations:

ATCAu0 ¼ ATCe�0: ðA11Þ
For an integral equation f:R3! R, the Fourier transfor-

mation is defined by:

dfðsÞ ¼ Jðf Þ ¼
Z Z Z 1

�1
f ðxÞe�2pix�sdx; ðA12Þ

where s = (s1, s2, s3)T is the coordinate in reciprocal space.
The inverse Fourier transformation is defined by:

f ðxÞ ¼ J�1ðf̂ Þ ¼
Z Z Z 1

�1

dfðsÞe2pix�sds: ðA13Þ

It can be shown that the differential operator A in real
space is transformed to the linear operator B in reciprocal
space, which is given by:

B ¼ 2pi

s1 0 0 0 s3 s2

0 s2 0 s3 0 s1

0 0 s3 s2 s1 0

0B@
1CA

T

: ðA14Þ

Then û0 is obtained from Eq. (A11) as:
bu0 ¼ Jðu0Þ ¼ ðBTCBÞ�1
BTCce�0 : ðA15Þ

From Eq. (A6), the transformed inhomogeneous strain is:be0 ¼ Jðe0Þ ¼ BðBTCBÞ�1
BTCce�0 : ðA16Þ

From Eq. (A9), the transformed inhomogeneous stress is:br0 ¼ Jðr0Þ ¼ CBðBTCBÞ�1
BTCce�0 � Cbe0 : ðA17Þ

The inhomogeneous stress and strain can be obtained by
the inverse Fourier transformation according to Eq. (A13).
Finally, together with the homogeneous stress given by Eq.
(A8) and the boundary condition, one can obtain the
driving force associated with elastic energy density given
in Eq. (11). If the kinetic equations in Eq. (16) are also
solved in the Fourier space, the inverse transformation of
stress is not needed in the phase-field simulation.
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