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Abstract-The present paper explores quasi-cleavage processes driven by dislocation pileups against a 
Dislocation Free Zone (DFZ). The nanoscopic growth of the main crack consists of sequences of 
nanocrack formation in DFZ and its subsequent linkage with the main crack. Under mode I loading, the 
equilibrium locations of individual dislocations and the equilibrium number of dislocations are determined 
by a minimum energy requirement. Three possible responses are revealed: cleavage without dislocation 
emission, cleavage after emitting certain amount of dislocations, and cleavage suppressed by incessant 
dislocation emissions. Accurate dislocations/FEM calculation indicates the emergence of a tensile stress 
peak ahead of the crack tip, as the dislocations pile up against the DFZ. The stress peak location and 
the number of emitted dislocations lead to a Crack Tip Opening Angle (CTOA) which is invariant during 
crack growth. Fracture resistance curves are obtained for quasi-statically growing cracks under the 
constant CTOA criterion. Copyright Q 1996 Acta Metallurgica Inc. 

1. INTRODUCTION 

Recent experiments [ 1,2] have revealed a mechanism 
of quasi-cleavage fracture: it proceeds by forming a 
nanocrack in the Dislocation Free Zone (DFZ) of 
large elastic distortion and then by linking the 
nanocrack with the main crack. Both experiments 
and previous theoretical analyses [l-6] suggest that 
this quasi-cleavage process is driven by dislocation 
pileups against the DFZ. DFZ plays an important 
role in the brittle versus ductile response of material, 
see Ohr [7]. It forms ahead of the main crack and 
translates as the crack propagates. Rice and 
Thomson [S] divided various materials into two 
groups: the intrinsically brittle materials in which 
cleavage occurs prior to any dislocation emissions, 
and the intrinsically ductile ones in which cleavage is 
prevented by dislocation emissions. However, the 
experiments of St. John [9], Lii et al. [3], Zielinski 
et al. [4], Huang and Gerbrich [5] and Marsh et al. 
[6] established that dislocation emission from sharp 
cleavage cracks do not necessarily guarantee ductile 
behavior in a cleavage solid. Consequently, a 
quasi-cleavage process emerges as an intermediate 
failure mechanism between the two extremes of 
cleavage and dislocation emission. 

Dislocation generation at a crack tip involves two 
successive stages: the dislocation nucleation at the 
crack tip and the dislocation motion away from the 
crack tip. Two groups of brittle materials exist. The 
materials in the first group have high barriers to 
dislocation emission, such as the ones studied by Rice 
and Thomson [8]. The materials in the second group 
have low dislocation mobilities. The nucleated 
dislocations cannot escape from the crack tip region 

rapidly, and their back stresses suppress further 
dislocation emissions [lo, 111. Accordingly, the brittle 
versus ductile response is not only controlled by the 
nucleation event, but also by the mobility of the 
emitted dislocation from the crack tip. 

A quasi-cleavage process driven by dislocation 
pileups can be envisaged as follows. The background 
resistance to dislocation motion comes from the 
lattice stress, see Chiao and Clarke [12], in the 
absence of other more stringent barriers such as grain 
boundaries, second phase particles and brittle-ductile 
interfaces [ 111. Upon loading, dislocations emit from 
the crack tip and come to rest at locations where the 
corresponding driving forces are balanced by the 
lattice friction. These dislocations are inversely piled 
up as an array along a slip plane. A DFZ will be 
formed between the crack tip and the dislocation 
pileup. The DFZ restores the elasticity in the crack 
tip region, while the plastic deformation around it 
shields the applied stress intensity factor, e.g. see 
Yang [13]. This inner elastic cell is highly distorted 
[ 1, 21, and contains many microscopic defects to 
initiate a nanocrack. The TEM in-situ observation 
[ 1, 21 showed that the nanocrack is nucleated in the 
highly stressed DFZ and then linked to the main 
crack. The sequence repeats itself under increased 
loading. The quasi-cleavage proceeds as step-by-step 
nanoscopic crack growth. Combining this mechanism 
with another mechanism of dislocation confinement 
of non-penetrating barriers, see Hsia et al. [1 11, one 

gets a complete picture on quasi-cleavage processes 
relating to dislocation mobility. 

The present paper aims at providing a mechanics 
description of the above mentioned quasi-cleavage 
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processes, under a mode I loading. Attention will be 
focused on several key aspects in a quasi-cleavage 
process, such as the lattice friction influence on DFZ 
formation, nanocrack initiation in the DFZ and the 
computational resistance curve. Most existing crack/ 
dislocation calculations relate to mode II and mode 
III cases, only a few calculations of discrete 
dislocations under mode I loading have been 
performed. Brede [14] provided a computer simu- 
lation of dynamic dislocation emission which has 
captured most of the phenomena for the brittle-duc- 
tile transition in Si. However, this makes his model 
appropriate to the high applied loading rate, which is 
not a necessary requirement for cleavage driven by 
dislocation pileups. Several important phenomena of 
quasi-cleavage processes were revealed through the 
static crack/dislocation computations by the Min- 
nesota research group [3-61. Their mechanics model, 
however, suffers from two difficulties. Firstly, they 
approximated the pileup ahead of the DFZ by a 
superdislocation and several single or mini-dislo- 
cations, which is a simplification for the dislocation 
pileups. Secondly, they removed the stress field 
singularity at the crack tip to shift the stress 
maximum away from the crack tip. Birnbaum 
prompted a query that it might be an artifact of the 
simulation, see Lii et al. [3]. 

The plan of the paper is as follows. First we shall 
provide the equilibrium locations of individual 
dislocations, under given mode I loading, given 
lattice resistance and number of dislocations. The 
actual equilibrium number of dislocations will be 
determined from a minimum energy requirement 
proposed in this paper. The competition between 
cleavage and continued dislocation emission in the 
DFZ will be evaluated next. Three possible responses 
emerge: cleavage without dislocation emission, 
cleavage after a certain amount of dislocation 
emissions and cleavage suppressed by incessant 
dislocation emissions, all depending upon the 
interplay between the intrinsic fracture toughness and 
the lattice resistance to dislocation emission. Accu- 
rate mechanics analysis (without the ad hoc 
assumption to remove the crack tip singularity) 
reveals the formation of a tensile stress peak ahead of 
the crack tip as the dislocations pile up against the 
DFZ. We will show that the intensity and the width 
of this tensile stress peak are sufficient to nucleate a 
nanocrack under a Griffith criterion for quasi-brittle 
materials. Under certain circumstances, we show that 
the crack growth is accomplished by the consecutive 
linkages of the nanocracks, rather than the extension 
of the main crack. The spacing of the stress peak, and 
the blunting of crack tip by dislocation emissions, 
give rise to a critical Crack Tip Opening Angle 
(CTOA) to dictate the quasi-cleavage processes. The 
constant CTOA criterion enables us to extend the 
present analysis to the case of a quasi-statically 
growing crack, and a fracture resistance curve is 
obtained. The asymptote of this curve may serve as 

an indication for the apparent macroscopic fracture 
toughness, I&. 

2. EQUILIBRIUM DISTRIBUTION OF 
DISLOCATION ARRAYS 

Consider a plane strain, semi-infinite crack in the 
x-xz plane, as shown in Fig. 1. The crack tip situates 
at the origin, and the crack plane (which is also 
assumed as the cleavage plane) occupies the negative 
x,-axis. A pair of symmetric slip systems emanate 
from the crack tip, and span an angle of c( to the 
xl-axis. In all calculations to follow, we will take 
c( = 45”. Edge dislocations are regarded as straight 
line defects which may slide on slip planes. 

The crack configuration is remotely loaded by a 
symmetric mode I stress intensity factor P’p, the 
equilibrium locations of the dislocations are denoted 
byh,,i= 1,2 ,..., n, and sequenced by the emission 
order. The integer n is the equilibrium number of 
discrete dislocations in one arm of the symmetric slip 
planes. 

2.1. Equilibrium locations of discrete dislocations 

We first determine the equilibrium distribution of 
edge dislocations on a pair of symmetric slip 
planes, under a given dislocation number n. The 
driving force on a dislocation at h, in the presence 
of a crack and other dislocations at h, 
(j= 1 > . > i-l,i+l,...,n)hasbeenstudiedby 
Lin and Thomson [15]. It consists of three parts: the 
force due to the applied stress intensity factor, the 
image force and the interaction force due to other 
dislocations within a cracked body. The total driving 
force on the dislocation is summed as 

F, = F; + F;=‘a@ + F:“‘” (1) 

where 

4’ 
F:mage = -4n( 1 _ ,,)h, 

Fig. 1. Schematic illustration of the symmetric crack/ 
dislocation configuration. 
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Fig. 2. Equilibrium distribution of dislocations indicates an 
inverse pileup against DFZ. The ordinate is the line density 
of dislocation pileup divided by the average density, and the 
abscissa is the distance from the crack tip measured along 

the slip plane. 

where /J denotes the shear modulus, v the Poisson’s 
ratio, and b the length of Burgers vector. The last 
expression in equation (2) sums over the interactions 
of other dislocations to the ith dislocation, with Fy”’ 
being the interacting force on the ith dislocation by 
thejth dislocation pair (under the symmetric two-arm 
configuration). Detailed expression of FTter is given by 
equation (A7) in the Appendix. 

At an equilibrium configuration, the driving force 
on each dislocation is balanced by the lattice friction 
resistance orb. Applying this condition to each 
dislocation leads to n equations to solve the n 
unknown dislocation locations. Under prescribed 
values of the applied stress intensity factor K”pp 
and the friction stress of, this nonlinear equation 
system is solved by a dynamic relaxation scheme 
to determine the equilibrium locations of dis- 
locations. 

Figure 2 shows the equilibrium distribution of 
discrete dislocations for different levels of lPP/pdb as 
0.98, 1.13 and 1.26, where the lattice friction is fixed 
at err/p = 0.003. The distribution of dislocations is 
expressed as the line density (hi+, - h,)-’ divided by 
the average density n/hm. Figure 2 demonstrates that 
the dislocations are indeed in the form of an inverse 
pileup. The least radius of DFZ, defined as the 
distance between the last emitted dislocation and the 
crack tip, decreases as K”pp increases. When 
(T~/P = 0.001, the size of DFZ declines from 380b at 
ppp = 0.6pJb to 125b at K”pp = l.Op,/b; and when 
crf/p = 0.002, it declines from 280b at Kapp = 0.6pJb 
to 95b at Kilpp = l.Op Jb. 

2.2. Equilibrium number of discrete dislocations 

The evolution of the dislocation configuration is 
envisaged as threading motions of dislocation lines 
driven under a minimum energy requirement, as 
discussed by Hsia et al. [l 11. This concept allows us 
to evaluate the equilibrium number of discrete 
dislocations by comparing the sum of the elastic 
strain energy and the total frictional work during 
dislocation threading. The importance of the energy 
consumption by friction was appreciated by Chiao 
and Clarke [ 121 in the investigation for materials with 
high friction stress. The central argument of 
minimum energy approach is as follows: in the 
presence of (n - 1) dislocations, if the total energy 
(including the work consumed by the movement of all 
dislocations) under a prescribed loading decreases by 
emitting an additional dislocation on the slip plane, 
then the state with n dislocations is energetically 
preferable. In order to determine the equilibrium 
number of dislocations, we need to evaluate the total 
energy for different n values. The n value correspond- 
ing to the energy minimum is the equilibrium number 
of discrete dislocations. In certain cases, the total 
energy keeps declining as n increases, until the 
existing dislocation pileup rejects any further 
dislocation emission. We take the maximum allow- 
able n value as the equilibrium number of 
dislocations in those cases. 

The total energy consists of: (1) the self energy of 
the dislocations, W,,,r; (2) the self energy of the crack 
tip stress field, W,; (3) the interaction energy between 
the dislocation stress field and the K”pp field, WKmd; 
(4) the interaction energy among various dislocation 
fields in a cracked continuum, Wd _ d; (5) the surface 
energy to create dislocation ledges, WjedEe; and (6) the 
work consumed by the resisting friction stress, Wk,,,,,,. 
The total energy of the system containing 2n 
dislocations on the symmetric slip planes can be 
summed as 

+ w, d + wedge + ~att,ce. (3) 

The self energy of the crack tip field is unchanged by 
introducing additional dislocations, and thus irrele- 
vant to the energy minimization process. The 
expressions for the other terms in equation (3) are 
listed as follows 

W,,,f = 2 i pb2 
,= ,47# - v) ink 

WK_* = -2i K”pp ,_,fib&,sinacosq 
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where rcuto~ denotes the equivalent cutoff core radius 
required to initiate a dislocation near the crack tip. 
The derivations of the Wself, W, _ d and WIedge terms in 
equations (4) follow the procedure by Hsia et al. [ 111. 

The WI,,,,,, term sums over the consumption of 
individual dislocations above and below the crack 
extension line. The expression of the Wd _ d term needs 
some explanation: it is composed by summing all 
interaction energies between any dislocation (labeled 
by i) and the dislocations ahead of it (sequenced as 
j=l,..., i - 1). Each contribution of the inter- 
action energy is evaluated as the work of moving the 
ith dislocation from the cutoff core distance from the 
crack tip to its equilibrium position, while the other 
dislocations remain at their equilibrium locations. 

Figure 3 shows the total energy as a function of IZ 
for a given lattice friction under different applied 
loads. The minimum points in Fig. 3 correspond to 
the equilibrium number of dislocations under the 
prescribed values of applied stress intensity factor 
K”pp and the friction stress of. Under a fixed lattice 
frictional resistance (say ar/p = 0.002), the equi- 
librium number of dislocations increases as ppp 
increases, as one observes from various curves in 
Fig. 3 for K”pC/p,/b = 0.600, 0.640 and 0.685. 
Repeated use of the minimum energy principle leads 
to the equilibrium dislocation number versus applied 
stress intensity factor curves for different values of 
lattice friction, as shown in Fig. 4. The lattice 
resistance stress airnay range from 0.0005 p to 0.01 CL. 
In drawing Fig. 4, we take af/p = 0.001, 0.002, 0.004, 
in a feasible range for quasi-cleavage processes. To 
conclude this section, we remark that the resistance 
to dislocation motion has been considered as a dry 
friction in the present calculation, though in many 

-20t.‘.“““““““““.““‘..’ 
2 3 4 5 6 I 8 

Number of dislocations n 

Fig. 3. Total energy as a function of dislocation number n, 
m/p = 0.002. 
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Fig. 4. Equilibrium dislocation number versus applied stress 
intensity factor Kapp curves for different lattice frictions. 

cases the friction is velocity dependent. Brede [14] 
proposed an elegant model to include shielding 
dynamics. The calculation demonstrated dramatic 
effects of kinetics confinement on dislocation 
emission. The present approach, though using a 
dynamic relaxation method to facilitate the numerical 
convergence, only aims at the equilibrium locations 
and the number of the dislocations. The dislocation 
number estimated by the minimum energy approach 
represents an upper bound of n for a dislocation 
emission process. 

3. STRESS DISTRIBUTION AHEAD OF THE 
BLUNTED CRACK TIP 

Dislocations emitted from the crack tip have two 
effects on the crack tip stress field. First, they exert 
a back stress onto the crack tip and thereby shield the 
crack tip from the applied loading. Second, they 
blunt the crack tip and thereby reduce the tensile 
stress at the crack tip. In this section, we explore the 
stress distribution ahead of the crack tip. The next 
two subsections approximate the back stress induced 
by the dislocation pileups by the dislocation self stress 
plus a stress due to an effective shielding stress 
intensity factor. More accurate calculations consider- 
ing blunted crack tip and discrete dislocation arrays 
will be explored in Section 3.3 by the finite element 
method. 

3.1. EfSective K field approach 

A dislocation ahead of a sharp crack tip sends a 
back stress to the crack tip vicinity. In an effective K 
field approach, the back stress of a symmetric 
dislocation pileup pair is characterized by a shielding 
stress intensity factor, K”h”‘d 
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The shielding effect of those dislocations would 
reduce the stress intensity factor presiding at the 
crack tip to Pp 

The cleavage within the DFZ is dictated by 
pp > PLTI”SIC , the latter represents the intrinsic 
fracture toughness of a dislocation free material. 

Figure 5 shows the relation between the near tip 
stress intensity factors and the applied stress intensity 
factor, under different lattice friction stresses 
rrI = 0.001, 0.002, 0.004. For a given lattice friction 
stress, the variation of Pp can be divided into three 
stages: P is identical to K”pp before dislocation 
emission; K”p continues to increase with K”pp after 
exceeding K’““, the near tip stress intensity factor for 
dislocation emission, until it reaches the maximum 
value P;&; K’lp declines under further increase of P’p. 
The R’P versus P’p curve in Fig. 5 is the upper 
envelope of the actual curve. The actual Pp curve 
drops at certain Pp values by emitting a dislocation, 
and then climbs up rapidly before the emission of the 
next dislocation. Hirsch and Roberts discussed this 
zigzag curve in detail [16]. 

Denote Pnnnc as the intrinsic fracture toughness of 
a dislocation free solid. Different relationships among 
X”l,,“91C > K’“” and PA;, result in three different 
responses. If P1r’“s’C is less than Kern”, the crack tip 
would be cleaved without dislocation emission; if 
K’ntnnr’c > g;y,, cleavage would be suppressed by 
incessant dislocation emissions; if 
K’“” < ~LrLnslc < pp Indh 1 cleavage would occur after a 
certain amount of dislocation emissions. The 
distinction among the above three near tip responses 
relies upon the interplay between the intrinsic 

0.7 1 I 

0.6 
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Fig. 5. Near tip effective stress intensity factor Krlp versus 
applied stress intensity factor K a~~ curves. The hollow circles 
represent the Kern” values, and the triangles indicate the K$, 

values. 

fracture toughness and the lattice resistance to 
dislocation emission. The last category defines the 
quasi-cleavage processes studied in the present paper. 

3.2. Estimates on the blunting effect 

For simplicity, we approximate the blunted crack 
tip by a notch with rounded tip of radius p = nb sin u. 
The stress field near the notch tip is composed of the 
stress field by the applied loading 0: and the back 
stress field due to dislocation pileups. The latter can 
be further divided into two parts: the self stress field 
C$ that corresponds to the infinite medium dislocation 
solution and the notch negation stress field 0: ~” that 
arises from the stress field to cancel the crack surface 
traction 

a,,=a;+C$+o;~“. (7) 

This subsection estimates the notch related stress 
fields, gt and @- “, through the effective K fields. 
Along the positive x,-axis, the tensile stress 
components of C$ and gi -n are given by 

The solution of dislocation self stress field cri in an 
infinite medium is given by 

(9) 

where the detailed expression of al;‘(x,; h,), which 
represents the self stress field for a symmetric 
dislocation pair of distance h, from the crack tip, has 
been derived in equation (A8) of the Appendix. 

3.3. Accurate evaluation ofstress distribution by FEM 

The stress distribution near the DFZ is essential to 
understanding the step-by-step quasi-cleavage crack 
growth. It was noticed by Shastry et al. [17] that the 
effective K field is invalid when the DFZ size is small, 
and the nonlocal effect of dislocation shielding should 
be considered. 

As a departure from the effective K field approach, 
we present an accurate evaluation of the stress 
distribution by FEM. The computation is conducted 
for the blunting crack configuration containing 
symmetric arrays of discrete dislocations. The inner 
8 layers of the finite element mesh of a side notched 
disc configuration are shown in Fig. 6. The actual 
grid contains a total of 1709 quadrilateral elements 
(arranged in 45 layers) and 1792 nodes. A highly 
refined grid is laid out within a region around the 
notch. Traction due to the remote field K;lpp is 
imposed on the outer boundary whose distance to the 
crack tip is chosen to be about 10,OOOb. The negatives 
of dislocation stresses in infinite medium (- gt) are 
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Fig. 6. Finite element mesh for the notch/discrete 
dislocation calculation. Only the inner eight layers of the 
mesh are shown. The complete mesh contains 45 layers of 

elements focused at the notch tip. 

applied to the surfaces of blunted crack to restore the 
free surface condition. The stress distribution derived 
from the finite element analysis combining with the 
stress field of dislocations in an infinite medium 
provides an accurate stress distribution in front of the 
blunted crack tip. Figures 7(a) and 7(b) show the 
evolution of hoop stresses along the extension line 
from the blunted crack tip, for at/p = 0.002 and 
0.006, respectively. As the applied loading ppp 
increases, more dislocations are emitted under the 
energy minimum requirement and inversely piled up 
against the DFZ. These pileup dislocations change 
the stress distribution. It is shown in Fig. 7(a) that the 
stress distributions evaluated by the effective K field 
estimate (shown by the dot-dashed curves) agree to 
the detailed FEM calculation of discrete dislocations 
(shown by the solid curves) at a distance of 
350 - 400b away from the notch tip. Nevertheless, 
the effective K field estimates differ substantially from 
the detailed FEM calculation within a region of 
several notch widths. In contrast to the effective K 

field estimates, the FEM calculations do not predict 
the hoop stress peaks at the notch tip when the 
applied loading is high. Instead, both Figs 7(a) and 
(b) indicate that the stress immediately ahead of the 
blunted tip reduces with increased loading, while a 
stress peak develops in the DFZ. This stress peak 
becomes more pronounced for larger value of or/p, as 
one compares the peak heights from Figs 7(a) and (b), 
where only the FEM calculations are plotted. The 
present FEM/discrete dislocation calculation is able 
to predict a hoop stress peak away from the notch tip, 
without an ad hoc removal of near tip singularity 
[3-61. 

3.4. Patterns of crack growth 

As mentioned above, the stress distribution along 
the crack extension line exhibits two peaks. As the 
remote loading increases, the first peak reduces while 
the second peak intensifies. Bonds will break when 
the peak stress exceeds a certain bond breaking stress 
ocr, leading to microscopic defects. Two patterns of 
defect growth exist: (1) the crack extends from the 
notch tip; and (2) a nanocrack forms ahead of the 
notch tip, and coalesces to the main crack. The actual 
pattern of crack growth will be selected by the 
stability of the above two defect patterns, according 
to the Griffith fracture criterion. 

First, we consider the nanoscopic crack extension 
from the notch tip. The amount of crack extension, 
termed anotch, is determined as the segment length 
along which the tensile stress oz2 (x1, 0; K”pp) exceeds 
ocr. The stress intensity for the crack extension from 
the notch tip, K”“lch, is given by 
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0 20 40 60 80 100 120 140 
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Fig. 7. Hoop stress distribution along the extension line of 
the notch tip. (a) ar/p = 0.002; (b) ur/~ = 0.006. In the top 
graph, the solid curves are an FEM calculation, and the 

dashed curves are the effective K field estimates. 
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a,,(~,, 0; KaPP) dx,. 
&z-z 

(10) 

In deriving the above expression, we assume a 
geometry of semi-infinite crack in an otherwise 
infinite medium. The tensile stress at the notch tip is 
released by the negating tractions along newly 
exposed crack faces of length anotch. Before the 
emission of the first dislocation, Ptch calculated from 
equation (10) equals the applied stress intensity factor 
K”PP, 

We next consider the formation of a nanocrack 
under the second stress peak. The nanocrack has a 
length 2a,,,,, which is determined as the segment 
length along which the tensile stress crzz(xI, 0; Ppp) 
exceeds gcr, and centers at the location x, = xpeak 
where the hoop stress g12 peaks. Under a prescribed 
ccr, the stress intensity factor for the nanocrack in the 
DFZ is 

J( 1 - s)/( 1 + s)cY(s; K&p”) ds (11) 

where 

d(s;PP) = a*,((& - xpea!Jananor 0; KdPP)/P (12) 

G+X”+ (13) 

is the dimensionless normal traction near the 
nucleation site of the nanocrack. The above 
expressions use a standard formula of stress intensity 
factor for a central crack in an infinite medium with 
prescribed crack face traction. Formula (11) omits 
the interaction between the main crack and the 
nanocrack, as argued by Lii et al. [3]. 

where G represents the energy release rate. The stress 
intensity factor K in equation (13) can be either Patch 
or K”“““. The surface energy term in equation (13) is 
scaled by 

We next discuss the variations of Ptch and K”““” 
with respect to the applied stress intensity factor PPp. 
The Notch versus Ppp curve follows the qualitative 
trend described in Section 3.1. As Ppp increases, Knoah 
first increases linearly and then levels off as 
dislocations emit from the crack tip. Under a certain 
value of Kapp, P”‘Ch reaches the maximum value 
(denoted as PA:‘) and decreases under further 
loading. The Km”” versus Ppp curve, on the other 
hand, dominates the fracture response at higher Kapp 
values. K”““” is identically zero under low applied 
load. It shoots up when the second stress peak in the 
DFZ is formed. As PpP increases further, the height 
of the stress peak increases but anan might decrease. 
As a manifestation of the two opposite tendencies, 
the K”““” versus ZPpP curve exhibits a maximum. This 
maximum value of K”““” is denoted by K”$Y!, it 
corresponds to the largest possible stress intensity 
factor to initiate a nanocrack during the loading 
process. Figure 8 shows the variations of ZPch and 
K”““” with respect to the applied stress intensity factor 
Ppp under a prescribed value of ar/p = 0.006. For this 
particular case, one observes that K”;:z is higher than 
K”‘Ych indicating the crack growth pattern may be m&Y > 
dictated by the formation and the linkage of 
nanocracks. 

Y = BPb. (14) 

The factor p ranges from 0.03 to 0.3, and was 
estimated for many materials by Rice and Thomson 
[8]. For example, p = 0.052 for Si, /I = 0.117 for Al, 
b = 0.168 for Cu, b = 0.208 for Au and p = 0.267 for 
Na. The smaller the p value, the more cleavable the 
material. 

When the value of b is small, Ptch may reach the 
critical value first and the cleavage starts from the 
notch tip. The notch tip cleavage prevails when 
ia < bktchr with 

P . (15) 

Under a higher value of 8, namely fl > bnotch, the 
crack extension from the notch tip of the main crack 
cannot satisfy the Griffith criterion (13). As IPp 
increases and dislocations pile up against the DFZ, 
the stress intensity factor for the nanocrack, K”“““, 
may eventually reach the critical value if the a value 
of the material falls below 

P”,,, = (1 - Vb”,“, 
4nb 

2 

X - s)/(l + s)@(s, K”PP) ds 

(16) 
Using the Griffith fracture criterion, one can For the case that P,3a is higher than Pm;:h, an 
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Fig. 8. Variations of K”“lch and R”“” as the applied stress 
intensity factor K”pp increases, crf/p = 0.006. 

determine the stability of a specific crack growth 
pattern 
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intermediate range of B exists such that 
B nolch d p d /?..,,. A nanocrack will form ahead of the 
notch under a prescribed ocr provided that 

(17) 

and the nanocrack inside the DFZ will coalesce to the 
main crack. This cracking pattern is consistent with 
the experimental observation [l, 21. As a representa- 
tive calculation, we take the material parameters of 
or/p = 0.006, acr/p = 0.06 and v = 0.3. A nanocrack 
will be formed in the DFZ provided fl > Pnorch = 0.051 
and B < Bnan0 = 0.055. As the applied loading Kapp 
reaches 1.82 pdb, K”““” will be 0.56 pdb and a 
nanocrack of half-length of anan = 17b will form and 
coalesce to the main crack. 

4. TOUGHENING DURING QUASI-STATIC CRACK 
GROWTH 

We next consider the toughening during the 
step-by-step crack growth in a quasi-cleavage 
process. A crack wake configuration containing 
parallel arrays of discrete dislocations is proposed to 
explore the relation between shielding dislocations 
and the resistance curve. Assume that the crack 
moves quasi-statically through the medium, emitting 
2n dislocations along the symmetric slip planes 
emanating from the current crack tip and then 
advancing a characteristic distance Aa by linking a 
nanocrack formed ahead of it. By the analysis from 
the preceding section, we have 

Au = xpeak + a,,,,. (18) 

The above crack growth amount, and the blunting 
width of crack tip by dislocation emissions, give rise 
to a critical Crack Tip Opening Angle (CTOA) to 
dictate the quasi-cleavage processes. Namely, 

nb sin c( 
CTOA = 2 tan’ 7. (19) 

The main crack will propagate under a constant 
CTOA furnished by the above formula. Figure 9 

Fig. 9. Schematics of quasi-static crack growth with 
symmetric arrays of dislocations left in the wake. Crack 

extends at a constant value of CTOA. 

gives a schematic configuration for the crack tip 
dislocation emissions and their accumulation within 
the wake during the step-by-step crack growth. The 
experimental observation of Zielinski et al. [4] for 
Fee2wt%Si showed that the cleavage crack left 3.5 
slip traces of residual dislocations for every 100 nm 
crack growth, with an average of 18.6 dislocations per 
trace. 

We now proceed to estimate the fracture resistance 
curve. As the crack tip advances, the driving force on 
the existing dislocations would drop. If the drop of 
the driving force on a previously emitted dislocation 
exceeds 2afb, the dislocation will move back to the 
crack surface. Because of the lattice friction, only a 
small fraction of emitted dislocations will retreat back 
to the cleavage surfaces. Their effect will be omitted 
in the subsequent analysis. The dislocations left 
behind in the wake exert shielding forces on the 
crack. For a crack to grow, the applied loading has 
to increase continuously. The toughness increment by 
the quasi-static crack growth is estimated here by a 
simple model that omits the interactions among 
various dislocation arrays. Under this assumption, 
the number, as well as the spacing, of dislocations on 
every slip trace is identical to the results we reported 
for the initiation of a quasi-cleavage process. The 
effect of the loading increment on the current crack 
tip is completely canceled by the effect from the 
shielding dislocations in the wake. 

The constant CTOA criterion enables us to derive 
a fracture resistance curve. Crack advances at a 
constant value of K”p to cleave the DFZ, and at a 
constant value of CTOA to emit more dislocations 
and to shield the current crack tip. Suppose that the 
crack grows an increment of Aa at each step, and has 
advanced m steps since initiation. The applied stress 
intensity factor, ppp, to maintain the quasi-static 
crack growth would consist of two parts: the stress 
intensity factor for crack initiation, R”“, plus the 
effective shielding contributions from all sub- 
sequently emitted dislocation arrays. K’“” is defined 
implicitly as the specific Kapp value that nucleates the 
first nanocrack ahead of the main crack. That is, at 

~PP = K’““, one has K”““” = 2 
J’ 

j+),‘i;. (20) 

The shielding influences may be estimated by the 
effective K-field, see Section 3.1. The global shielding 
is contributed from dislocations on the parallel slip 
planes (m planes above and m planes below the crack 
extension line), with n dislocations on each slip plane. 
The contribution from the symmetric dislocation 
arrays emitted from the current crack tip has already 
been included in the K’“” term. To summarize, one has 

K”pp = X”” + 2 t KSh”‘d(r,,, Q,,). 
,=,,=I 

(21) 

In equation (21), Fhleld(r, 0) represents the shielding 
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Fig. 10. Fracture resistance curve for a quasi-cleavage 
process. ai/p = 0.006, am/p = 0.06 and fi = 0.055. 

stress intensity factor by a pair of symmetric 
dislocations locating at the polar coordinates (Y, * 0) 
measured from the current crack tip, and its 
functional form is derived in equation (AlO) of the 
Appendix. rB and B,, are the radius and angle of the 
ith dislocation on the jth slip plane, given by 

r,, = Jj2Aa2 - 2jAah, cos r* + hf, 

QU = tan-’ 
h, sin CI 

h,cosa-jAa’ (22) 

Figure 10 shows a typical fracture resistance curve 
as the crack grows, where we use the parameters of 
ar/p = 0.006, crcr/p = 0.06 and /I = 0.055 to plot it. 
The nucleation of the nanocrack occurs when the 
main crack blunts up to about 196. The asymptote of 
this curve may serve as an apparent value of the 
macroscopic fracture toughness, KIc. Significant 
toughening has been achieved by consecutive 
emissions of dislocation arrays. 

5. CONCLUDING REMARKS APPENDIX 

A quasi-cleavage fracture mechanism driven by 
dislocation pileups has been proposed here under an 
accurate mechanics analysis of the first principle type. 
We are able to find the number and the distribution 
of dislocations emitted from the crack tip. Those 
dislocations pile up inversely against the DFZ ahead 
of the blunted crack tip. For materials with high 
lattice resistance, discrete dislocation evaluation and 
finite element analysis indicate that the stress peak 
may shift to some distances away from the notch tip 
as dislocations pile up. This stress peak shift leads to 
the nucleation of a nanocrack and its coalescence to 
the macroscopic crack. The prediction of the present 
model is consistent with the recent TEM in-situ 
observation by Chen et a/. [l] and by Zhang et al. [2] 
that the nanocrack is preferably nucleated inside the 
DFZ. 

Stress Fieldfor a Sharp Crack Interacting with a Pair 
of Symmetric Dislocations 

The interaction between a sharp crack and dislocations 
has been extensively studied by Lin and Thomson [ 151. In 
this Appendix, we complement their results by providing the 
complete stress field for a symmetric pair of dislocations 
interacted with a sharp crack. Our derivation consists of a 
simplified version from the work of Suo [18] for singularities 
interacting with interfaces and cracks. 

We adopted complex potentials Q(z) and n(z). Stress 
components are derived from 

CrII + 022 = 2(@(z) + @(z)) (Al) 

622 + ig,2 = Q(z) + n(z) + (; - z)@‘(z). (AZ) 

The solution is built on the superposition of two solutions. 
One corresponds to the infinite medium dislocation solution 
(labeled by a subscript “0”) and the other arises from the 
stress field to negate the crack surface traction (labeled by 
a subscript “1”) 

For a quasi-statically moving crack, our analysis 
has revealed that the dislocations in the plastic wake 
exhibit a large shielding effect. A higher load has to 
be applied to drive the crack to grow at constant K”P 
and constant CTOA values. The asymptote of the 
fracture resistant curve may serve as an indication of 
the macroscopic fracture toughness. 
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a+) = @o(z) + @l(Z) 

cl(z) = no(z) + R,(z). (A3) 

The potentials for a pair of dislocations at s and S in an 
infinite plane can be written as 

B B 
%(z;s) = z_s + z-_s 

sb(z;s) = &s + w + +$ + f&$ z Z 
(A4) 

where 

B= &(bl + ibz). 

bl and b2 are the Burgers vector components in XI and x2 
directions, respectively. 

The potentials due to the negating stress are derived as 

_ 
Q,(z;s) = @,(z;s) = -; 

i- 
A+ & + & + 5 

IsB:; ) f& Q-s) s+z 
s - z TJr (s - z)’ 

+Wfi]}. (fw 

Substituting equations (A4) and (A6) into (A3), and then 
into (Al) and (A2), we obtain the stress field of a pair of 
symmetric dislocations at s and S. 

Listed below are some results used in the text of the 
present paper. 

(1) Interaction force on one dislocation due to a symmetric 
dislocation pair. Consider the interaction force on a 
dislocation at z, = h, e’” due to a pair of symmetric 
dislocations at s, = h,ezE and .$. In the presence of a sharp 

crack, this interaction force is 

d (2, - z,) -@(Z,;S,) 
dz, 

+R(z,;s,) - q%;s,) (A7) 

which furnishes a formula in the last expression of equation 
(2) in the text. 

(2) Dislocation self stress along the crack extension line. 
Consider the hoop stress along the crack extension line 
induced by the self stress of a symmetric dislocation pair at 
s! = h,eI” and S,. It can be written as 

a%(x~;h,) = Re[%(xl;s,) + &(x,;s,)] (A8) 

where iii,(x,; s,) and .!&(x,; s,) can be evaluated from 
equation (A4), with s replaced by 3,. Equations (A4) and 
(A8) help the evaluation of equation (9) in the text. 

(3) KJield shielding by a symmetric pair of dislocations. 
We conclude this appendix by a formula of K field shielding 
due to a pair of dislocations at s and S. The part of the 
dislocation stress field that cancels the crack surface traction 
(denoted by a subscript “1”) possesses the square root 
singularity near the crack tip. Therefore, 

K”h”ld = -2fiX~~+;r;;@(x,). (A9) 

If the locations of the symmetric dislocation pair are at 
s = re’O and S (e # c( if the dislocation pair does not emit 
from the current crack tip), one obtains 

~0s; sina+sin$cos IS-. ( >I , (A101 
where the Burgers vector is assumed to align with the slip 
plane. The above expression can be used in equation (21) in 
the text. For the special case of 0 = c(, equation (AlO) is 
reduced to equation (5) in the text. 


