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We measure the strain rate dependence of 0.2% offset yield stress in single-crystal nickel

nanowires with diameters ranging from 80 to 300 nm. In situ tensile experiments with strain rates

from 10�4 s�1 to 10�2 s�1 were conducted, and the small activation volume (�10b3, where b is

the Burgers vector length) and high strain-rate sensitivity (�0.1) were obtained. These results

agreed with atomistic simulations. Our work provides insights into the strength-limiting and

rate-controlling mechanism of plasticity at the nanoscale.VC 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4793481]

With the rapid development of nanotechnology in the

past two decades, one-dimensional metallic nanowires have

been fabricated and used as essential building blocks in elec-

tromechanical systems, interconnects, and other nano-devi-

ces.1–3 The reliability concerns of these applications call for

a fundamental research on the deformation mechanism in

small-volume metals at the sub-micron and nanometer length

scales.4,5 Compared to bulk crystals, nanowires have a large

surface to volume ratio. As a result, their free surfaces could

serve as effective sources and sinks of dislocations, thus are

expected to play an important role in plastic deformation at

small length scales. A number of interesting phenomena

have been observed, including ultrahigh strength, fracture

mode transition, and size and strain-rate sensitive mechanical

properties.6–9

While the size dependence of mechanical properties has

been extensively investigated for face-centered cubic (FCC)

metals by both experimental and theoretical approaches,10–16

the strain-rate effects have not been well studied experimen-

tally.17 To unravel the relationship between strength and strain

rate, the rate-controlling deformation mechanism must be

understood. In this regard, the kinetic rate theory provides a ba-

sis of bridging the strength and rate properties with the under-

lying deformation mechanism.18 Two types of quantitative

measures can be used to characterize the rate-controlling de-

formation mechanism: the athermal strength and activation pa-

rameters. While the athermal strength measures the elastic

limit of material without the aid of thermal fluctuations, the

activation parameters characterize the probabilistic nature of

transformation by thermal fluctuations when the applied load

is below the athermal limit. The activation parameters include

activation energy and activation volume. These two parame-

ters can be determined both experimentally and computation-

ally. In experiments, the activation volume is typically

determined by measuring the strain-rate sensitivity. Lu et al.
showed that compared to coarse-grained copper, nano-twinned

copper has a high rate sensitivity of�0.02 and small activation

volume of �20b3, where b is the length of the Burgers vec-

tor.19 The small activation volume has also been measured in

nanocrystalline nickel by Ma et al.20 Moreover, the small acti-

vation volume has been obtained during uniaxial compression

of copper nanopillars.17 In computational modeling, the activa-

tion parameters can be calculated in an efficient manner by

using the atomistic reaction pathway exploration approach

such as the nudged elastic band (NEB) method; Zhu et al. cal-
culated the stress-dependent activation energies and found that

a small activation volume (less than 10b3) leads to the

increased strain-rate sensitivity of flow stress in copper

nanowires.4

In this paper, both strain-rate sensitivity and activation

volume were quantitatively measured in nickel nanowires (Ni

NWs) under tension. A micro-mechanical device was

employed to perform in situ tensile tests for one-dimensional

NWs inside a scanning electron microscope (SEM). The Ni

NWs with diameters from 80 nm to 300 nm were tested under

the strain rates spanning from 10�4 to 10�2 s�1. The strain-

rate dependence of the 0.2% offset yield stress was analyzed

to determine the strain-rate sensitivity and activation volume.

Finally, atomistic simulations were performed to correlate

with experimental results, thereby providing mechanistic

insights into the rate-controlling deformation mechanisms.

Single-crystal Ni NWs were synthesized via an electro-

chemical deposition method using nanoporous anodic alumin-

ium oxide (AAO) templates with different pore sizes (from

100 to 300 nm). The transmission electron microscope (TEM)

select area diffraction (SAD) analysis (insets of Fig. 1(b)) of

individual NWs at different locations indicated that Ni NWs

with diameter of �100 nm are single crystalline with [111]

axial orientation, while those with diameter of �200–300 nm

are also single crystalline, but with [112] axial orientation.

The uniaxial tensile tests were performed using a micro-

mechanical device inside a SEM (FEI Quanta 400, Hillsboro,

Oregon) chamber equipped with an InSEM nanoindenter

(Agilent Technologies, Oak Ridge, Tennessee). All details

concerning sample synthesis, mechanical testing, and data

analysis can be found in previous publications.9,15,16 The ten-

sile tests were performed under the displacement-controlled
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mode, and the corresponding strain rates varied from 10�4 to

10�2 s�1.

Uniaxial tensile tests at room temperature (300K) were

performed for thirty Ni NWs with different diameters (80 to

300 nm) and two different crystalline orientations ([111]

NWs with diameter of �100 nm and [112] NWs with diame-

ter of �200–300 nm). Six representative engineering stress-

strain curves of Ni NWs under different strain rates are shown

in Fig. 1(a). All the stress-strain curves are nearly linear, with

only a small change in the slope right before failure. No

obvious yielding can be detected before the final fracture,

which occurs shortly after achieving the ultimate tensile

strength (UTS) in all of the tested samples (including those

not shown in Fig. 1(a)). The UTS of the six samples are high,

in the range of 1.2–3.4GPa. A size effect in UTS can be

found, with a higher strength level for Ni NWs of �100nm

diameter than for counterparts with larger diameter.

Specifically, the UTS is about 1.2–1.5GPa for the diameter

group of �200 to 300 nm and is about 2.5–3.4GPa for the di-

ameter group of �100nm. More importantly, in the same

group with similar diameters, a higher strain rate always

results in a larger UTS (Fig. 1(a)). It is clear that the smaller

sample diameter and higher strain-rate give the larger UTS.

The size dependence of strength or yield stress was

widely reported in small single-crystal metals and alloys,

e.g., in pure Ni, Au, Cu, and Ni alloy pillars tested by micro-

compression.7,11–13 To compare the data in the literature in

terms of size dependence of yield stress, a simple power law

of r / D�a, analogous to the well-known “Hall-Petch” rela-

tionship, was introduced to reveal the scaling trend, with the

size of grains replaced by the diameter of NWs or nanopil-

lars. Because no apparent yielding was observed in our sam-

ples, a 0.2% offset yield stress was used to define the yield

point in this work. Fig. 1(b) shows the relation between 0.2%

offset yield stress and the NW diameter under the two differ-

ent strain rates. The fitting parameter of the exponent a is

�0.7 in both cases (0.68 and 0.75), close to the previous

report for Au and Ni pillars.13,21 This consistency suggests

that the exponent a is not significantly affected by strain

rates for NWs in the size regime studied.

To understand the strain-rate effects on yield stress, acti-

vation volume and rate sensitivity are two important parame-

ters to consider as discussed earlier. The rate sensitivity, m,
is usually defined in terms of an empirical fitting formula

between the yield stress r and strain rate _e,

r ¼ r0 _e
m; (1)

where r0 is the reference stress constant. Physically, the acti-
vation volume measures the individual and collective nature

of an underlying defect process that controls the plastic

yielding, and it is proportional to the number of atoms simul-

taneously involved in a thermally activated process of defect

nucleation or migration. By fitting the curve of strain rate as

a function of yield stress, the activation volume v* can be

obtained according to

�� ¼ kBT
@ ln _e
@r

; (2)

where kB is the Boltzmann constant and T is the temperature.

In our experiments, we performed the uniaxial tensile

tests at different strain rates, spanning three orders of magni-

tude, from 10�4 to 10�2 s�1. Fig. 2 shows the experimentally

measured 0.2% yield stress as a function of strain rate for

two diameter groups of Ni NWs. By a linear fitting of the

logarithm of yield stress versus strain rate based on Eq. (1),

the strain-rate sensitivity m is calculated for each Ni NW

size group. For the group of �200–300 nm, m¼ 0.08, while

for the group of �100 nm group, m¼ 0.098. These values

are more than 15-fold greater than that of bulk coarse-

grained Ni (�0.005) at room temperature (300K), and at

least 4-fold greater than that of nanocrystalline Ni (�0.02).20

Notably, these values of strain-rate sensitivity are close to

the recent result (�0.11) from Cu nanopillar compression

experiments,17 where sample sizes and experimental condi-

tions (nanopillar diameter are 75 nm and 125 nm under the

strain rate <1� 10�2) are similar to our work. This finding

suggests that as the sample size is reduced not only does the

strength/yield stress increase but also the strain-rate sensitiv-

ity markedly increases.

FIG. 1. (a) Six representive engineering stress-strain curves of Ni NWs under tension. In both groups of NWs with either �100 nm or �200–300 nm in diame-

ter, the sample tested at higher strain rate has higher strength; and the average strength of 100 nm group is much higher than that of 200–300nm group. (b)

0.2% offset yield stress as the function of NW diameter, under two different strain rates. The NWs with smaller diameters have higher 0.2% offset yield stress,

and the NWs with similar diameter under the higher strain rates have higher 0.2% offset yield stress. Insets are TEM SAD analysis: 100 nm diameter Ni NWs

are single crystals with [111] orientation along the axial direction, and the 200–300 nm diameter Ni NWs are single crystals with [112] orientation along the

axial direction.
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We further estimated the activation volume to be �6b3

for the group of �200–300 nm and �3b3 for the group of

�100 nm on the basis of Eq. (2), where b is the Burgers vec-

tor length of a {111}h112i partial dislocation in Ni. Unlike

the body-centered cubic (BCC) metals such as Mo,22 the

trend of the smaller sample with the smaller activation vol-

ume is expected in FCC metals. In bulk FCC crystals, the

forest dislocation interaction dominates the plastic deforma-

tion when the grain size is in the micrometer range, and the

activation volume is relatively large �100–1000b3. Thus,
the thermal contribution is nearly negligible to the yield

strength. However, grain refinement from the micrometer to

the nanometer scale can lead to a decrease in activation vol-

ume by two orders of magnitude. Ma et al. showed that the

activation volume can be as small as 20b3 in the nanocrystal-

line Ni of 30 nm in grain size,20 and the dominant deforma-

tion mechanism is changed to grain boundary-mediated

dislocation activities. Moreover, Lu et al. obtained the simi-

larly small activation volume �20b3 in the nanotwinned Cu

samples,19 and attributed the controlling mechanism to the

twin boundary-mediated dislocation processes. In our single-

crystal Ni NWs, the measured activation volume of �10b3 is
on the same order of that in nanocrystalline and nanotwinned

FCC metals. These measured small activation volumes sug-

gest that the rate-controlling deformation mechanism is tran-

sitioning from the typical process of forest dislocation

cutting in coarse-grained bulk metals to the nucleation-

controlled dislocation process in nanostructured and nano-

sized metals.18 Generally, the controlling mechanism is

expected to relate to the interface dislocation process in

nanocrystalline and nanotwinned metals, and to the surface

one in small-sized nanowires.

To gain mechanistic insights into the measured high

strain-rate sensitivity and small activation volume in Ni nano-

wires, we conducted the molecular dynamics (MD) simula-

tions with an empirical interatomic potential of Ni23 to

identify the representative dislocation processes that might be

strength and strain rate controlling. With these unit processes

as input, we further performed the NEB calculations to quan-

tify the associated activation volumes for correlation with ex-

perimental measurements.4,5 For single-crystal Ni NWs with

the cross-sectional size of �10 nanometers, our MD simula-

tions indicate that the individual dislocations inside NWs are

not stable and tend to escape from the free surface, leading to

dislocation starvation. Such dislocation-starved state arises

owing to the large attractive image force of the free surface

that destabilizes the dislocation inside the NWs, as well as the

lack of effective mechanisms of dislocation blocking and

multiplication within the small-sized NWs. To sustain the

continued plastic deformation, the free surface of the nano-

wire acts as a source of dislocations. The representative unit

process typically involves the dislocation nucleation from a

free surface, gliding into the bulk, and annihilation at the op-

posite free surface of the NW. Among these three steps, the

surface dislocation nucleation is most difficult and thus rate

controlling.

Using the free-end NEB method,4,5 we calculate the

activation energy of surface nucleation as a function of the

applied tensile stress for both [112] and [111]-orientated Ni

NWs, as shown in Figs. 3(a) and 3(c). The activation vol-

umes are then estimated by taking the numerical derivative

of activation energy with respect to stress. Notice that the

activation volume is also a function of stress. Thus, we

define the yield stress as the tensile load giving the activation

energy of 0.7 eV for surface dislocation nucleation; this char-

acteristic activation energy corresponds to �30kBT at room

temperature, giving the nucleation rate relevant to the labora-

tory experiments according to transition state theory. On this

basis, we obtain the activation volume of 2.4b3 and 2.1b3 for
the [112] and [111] nanowire, respectively. Figs. 3(b) and

3(d) show the corresponding saddle-point state with a partial

dislocation loop nucleating from the NW surface. Our stud-

ies of dislocation nucleation from other side faces indicate

that the above results of calculated activation volumes are

insensitive to the specific nucleation site on the surface.

To gain a physical understanding of the characteristi-

cally small activation volume associated with plastic yield-

ing in FCC Ni NWs, we note that the atomic volume

enclosed by the dislocation loop in Figs. 3(b) and 3(d) repre-

sents the activation volume of surface nucleation. In a ther-

mally activated process, the resolved shear stress does work

on this volume to lower the activation energy and thereby

facilitates dislocation nucleation. Our calculated activation

volumes fall in the range of 1–10b3, consistent with the pre-

vious atomistic study of surface dislocation nucleation in

FCC Cu nanowires.4,5 Compared to coarse-grained Ni, the

reduced activation volume and correspondingly increased

rate sensitivity in small-sized NWs can be attributed to the

ultra-high yield stress on the order of Gigapascals. As a

result, the work done by such ultra-high stress on a small

activation volume of surface nucleation is sufficient to lower

its activation energy to the order of 0.7 eV, in order for the

nucleation rate and associated plastic strain rate matching

the externally applied loading rate.

However, we note that the tensile yield stresses in our

NEB calculations (i.e., the stress of surface nucleation with

activation energy around 0.7 eV) are around 15GPa. They

are markedly larger than the experimentally measured

FIG. 2. 0.2% offset yield stress as the function of strain rate. The samples

were grouped into two branches, 100 nm and 200–300 nm groups. For the

samples of 100 nm group, the activation volume v* is about 3b3, the strain

rate sensitivity m¼ 0.098; and for the samples of 200–300 nm group, the

activation volume v* is about 6b3, the strain rate sensitivity m¼ 0.080. All

the calculations are based on partial dislocation scenario.
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values. To explain such a discrepancy, we propose that for

the nanowires in experiments, their yielding is controlled by

the bulk and surface dislocation processes collectively. The

former process usually involves the cutting of forest disloca-

tions, giving the relatively low yield stress and large activa-

tion volume. In contrast, the latter corresponds to the high

yield stress and low activation volume. Our atomistic model-

ing only addresses the latter process, owing to the limited

computational resources. In experiments, the nanowires with

two different diameters (100 nm versus 200–300 nm) reveal

the size dependence of yield stress and activation volume.

We attribute such a size effect to the transition from the bulk-

controlled to surface-controlled dislocation process with

decreasing size of nanowires. A similar size effect has been

shown previously in the study of nanotwinned copper with

different twin lamellae thicknesses.19 In addition, we note that

the temperature effects on activation energy and activation

volume have been recently studied in detail.4,5,24,25 However,

in order to bring out the essential physical effect without addi-

tional complications, we only study in this Letter the zero-K
activation energy and activation volume. Corrections account-

ing for the finite temperature effects would not reconcile the

discrepancy in measured and calculated yield strengths.

Hence, we rationalize both the size effect and experiment-

modeling difference in terms of the transition between the

bulk and surface-controlled dislocation processes.

In conclusion, we measured both the size and strain-rate

dependence of yield stress in single-crystal Ni nanowires

with different diameters under uniaxial tension inside a

SEM. The experimental results show the high strain-rate sen-

sitivity of �0.1 and the small activation volume of �10b3

for Ni nanowires. Such findings are confirmed by atomistic

simulations. Our combined experimental and modeling study

provides new insights into the strength-limiting and rate-

controlling deformation mechanisms in nanoscale metals.
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