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Gradient nano-grained (GNG) metals are a unique class of materials with spatial gradients
in grain size, typically from the surface to the bulk. Here the gradient mechanical behavior
in GNG copper is studied by a crystal plasticity finite element model that accounts for grain-
size-dependent yield strengths. The associated finite element simulations reveal both the

gradient stress and gradient plastic strain in the cross section of GNG copper subjected to
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axial tension. These spatial gradients arise due to progressive yielding of gradient grains
under an overall uniform deformation. They stand in stark contrast to the widely studied
strain gradient plasticity induced by imposing a non-uniform deformation such as torsion,
bending, and indentation. Our work suggests a new material strengthening mechanism

through the introduction of plastic strain gradients via gradient microstructures.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gradient nano-grained (GNG) metals are a new class
of materials with unique polycrystalline microstructures
[1,2]. Their grain sizes typically change with a gradient
variation between tens to hundreds of nanometers, from
the surface to the bulk. GNG metals promise to achieve
an unprecedented combination of strength, ductility and
toughness. They have great potential in engineering ap-
plications [1-6] and also motivate exploration on various
other kinds of gradient nanostructured materials [7-10].

Experiments have been performed to process the GNG
metals and further study their mechanical behavior. Fang
et al. [1] utilized surface mechanical grinding treatment to
prepare a GNG surface layer in a bulk coarse-grained (CG)
rod of face-centered cubic (FCC) Cu. The topmost layer of
the GNG structure, up to a depth of 60 wm, consisted of
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nano-grains with an average grain size of about 20 nm. The
grain size gradually increased to about 300 nm in the depth
of 60 wm-150 pwm. Below the depth of 150.m, the grain
size continued to increase to that of coarse grains at the
micrometer scale. The tensile yield strength of the GNG/CG
Cu was two times that of CG Cu, and the yield strength of
the free-standing GNG foil was ten times that of CG Cu.
Recently, Wu et al. [5] used surface mechanical attrition
treatment to prepare GNG samples of body-centered cubic
(BCC) steel with a sandwich sheet structure, i.e., a CG core
in between two GNG layers. The tensile tests showed that
the gradient structure induced an extra strain hardening,
which led to a high ductility. This extra strain hardening
was attributed to the effects of the macroscopic strain
gradients associated with multi-axial stress states in GNG
structures.

The experiments described above have shown the en-
hanced mechanical properties of GNG metals. However,
the detailed mechanisms underlying the observed me-
chanical behavior of GNG metals remain little understood
[11-13]. In this letter, we employ a crystal plasticity
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finite element (CPFE) model to investigate the mechanical
responses of GNG Cu. We build a GNG structure by adapt-
ing the conventional Voronoi tessellation method [ 14]. We
also extend the classical crystal plasticity theory to in-
corporate the grain-size-dependent constitutive relations.
The associated finite element simulations reveal a novel
type of gradient stress and gradient plastic strain in the
cross section of GNG samples subjected to axial tension.
These spatial gradients arise due to progressive yielding
of gradient grains under an overall uniform deformation.
They stand in stark contrast to the widely studied strain
gradient plasticity induced by imposing non-uniform de-
formations. Our work has important implications for ma-
terial strengthening through the introduction of plastic
strain gradients via gradient microstructures.

2. Modeling methods

2.1. Grain-size-dependent crystal plasticity theory

To model the constitutive response of GNG Cu, we ex-
tend the classical crystal plasticity theory by incorporat-
ing the grain size dependence of yield strength. The rate-
dependent finite strain crystal plasticity theory adopted
here can be traced to the work by Rice [15], Asaro and
Rice [16], and Kalidindi et al. [17]. According to Kalidindi
et al. [17], the plastic shearing rate on the slip system « is
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where 7% is the resolved shear stress, s* is the slip resis-
tance, y, is the reference shearing rate, and m is the strain
rate sensitivity parameter. The initial value of s* is de-
noted as sg. During plastic deformation, the slip resistance
s“ evolves according to

§=Zhaﬁb}ﬁ" h*f = q*Pp®,
B (2)
h(ﬂ) = ho (1 — Sﬂ/Ssat)a

where g*# are the components of a matrix which describes
the latent hardening behavior of the crystal, and hg, a and
Ssa¢ are the hardening parameters taken to be identical for
all slip systems.

Our crystal plasticity model is dependent on grain size.
For each grain, the slip resistance parameters, includ-
ing {sg, ho, a, Ssa, m}, are taken as functions of grain
size [18,19]. According to the classical Hall-Petch relation,
the overall yield strength is inversely proportional to the
square root of grain size [20,21]; such a relation is valid for
grain sizes greater than ~20 nm [22,23]. In this work, we
assume that all the slip resistance parameters at the single
crystal level are inversely proportional to the square root
of the size of the local grain D,

{so(D), ho(D), a(D), $sat(D), m(D)} ~ D~ '/2. (3)

The numerical values of grain-size-dependent sy are
readily estimated from the available experimental data in
the literature, but the determination of the strain hard-
ening related parameters {hy, a, Ssit} requires certain

assumptions. Specifically, the values of sy are determined
based on the experimentally measured yield stresses of
nanocrystalline Cu with uniform grain size, i.e., from
860 MPa to 400 MPa for D from 20 nm to 110 nm [24-26].
Dividing these macroscopic yield stresses by Taylor’s fac-
tor of 3, we estimate sy in between 286 MPa and 133 MPa.
Nanocrystalline Cu exhibits little hardening in experi-
ments. However, we assign small values of {hg, a, Ssai},
so as to produce a weak hardening for ensuring numeri-
cal stability in CPFE simulations. For the 20 nm grain, we
take hg = 102 MPa, a = 2.0, ss;; = 600 MPa; and for the
110 nm grain, hy = 48 MPa, a = 1.8, 53y = 287 MPa.
Furthermore, experiments show that the strain rate sen-
sitivity exponent m of nanocrystalline Cu with uniform
grain size varies from 0.04 to 0.022 for D from 20 nm to
110 nm [27,28]. To evaluate s for intermediate grain sizes,
we use the above bounding values to fit the formula of
so = B+ C - D~/2 where B and C are the fitting constants.
Along the same line, we also fit other slip resistance pa-
rameters of {hg, a, Ss;;, m} for intermediate grain sizes.
The following fitting formulas are obtained:

so(MPa) = 19.3 4 1196 - D~ '/2,
ho(MPa) = 8.68 + 415.8 - D™ /2,
a=1.65+1.56-D"1"2

et (MPa) = 53.7 4+ 2443 . D™/2,
m = 0.0086 + 0.1403 - D~ /2,

(4)

Other material properties, including elastic constants
(Ci1, Cia, Ca4), twelve {111} (110) slip systems, and
the latent hardening matrix {g*#}, are assumed to be
independent of grain size. For FCC Cu, we take C;; =
170 GPa, C1, = 124 GPa and Cy = 75 GPa; ¢*# = 1.0
if the slip systems « and § are coplanar and ¢*# = 1.4 if
they are non-coplanar [17].

2.2. Finite element model

We construct a two-dimensional GNG structure with
columnar grains by adapting the Voronoi tessellation
method in Matlab. The geometrical information of the GNG
structure is then used to develop the corresponding fi-
nite element model in ABAQUS/CAE with a Python script.
Fig. 1 shows an example of the GNG structure generated
in ABAQUS/CAE. In this case, the grain size D increases
linearly from ~20 nm in the top/bottom surface layer to
~110 nm in the central region. The overall sample geom-
etry is 640 nm in length and 1120 nm in width. As such,
the spatial gradient in grain size, |dD/dy|, is about 0.1.
The orientation of grains is assigned randomly in terms
of three Euler angles, {#, ¢, 2}, representing rotations
from the crystal basis to the global basis [17]. The sample
is meshed with the non-structured plane strain elements.
As a result, most elements have four nodes (CPE4R) and a
small fraction three nodes (CPE3). Displacements and trac-
tions are continuous at grain boundaries, meaning no sep-
aration or sliding between every pair of adjoining grains.
A user material subroutine VUMAT [29] is developed in
ABAQUS/EXPLICIT to implement the grain-size-dependent
crystal plasticity model described above. All the slip
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Fig. 1. Crystal plastic finite element model of GNG Cu, which consists
of an assembly of quasi-2D columnar grains having a linear variation of
grain size from ~20 nm in the top/bottom surface layer to ~110 nm in
the central region.

resistance parameters at each integration point depend
on the local grain size D according to Eq. (4). Using the
GNG structure in Fig. 1, CPFE simulations are performed
to investigate the axial tensile responses of GNG Cu un-
der the plane-strain condition. The boundary conditions of
the GNG sample are prescribed as follows: the upper and
lower surfaces are traction free; on the left side (x = 0),
the displacement in the x direction is zero (1, = 0); on the
right side (x = 640 nm), the velocity in the x direction is
constant (vy = 0.64 nm/s), corresponding to an applied
tensile strain rate of 0.001/s.

3. Results and discussion

Fig. 2 shows the simulated stress-strain response of the
GNG Cu sample subjected to axial tension under the plane-
strain condition. Deformation begins with a linear elastic
response. When the elastic strain reaches about 0.27%,
the GNG Cu starts to yield, i.e., deviating from the linear
stress—strain response, at about 390 MPa. Further straining
results in a smooth and gradual increase of the axial
tensile stress. Such a yielding behavior can be attributed
to progressive attainment of yield strengths in grains with
random orientations and, more importantly, with gradient
sizes having gradient slip resistances. When the applied
tensile strain reaches about 0.5%, the entire GNG Cu sample
yields and the stress—strain curve attains a plateau of about
500 MPa.

Importantly, our CPFE simulation reveals the gradient
stresses in the cross section of GNG Cu, which arise due
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Fig. 2. CPFE simulated stress-strain curve for a GNG Cu sample subjected
to axial tension. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

to progressive yielding of grains with gradient sizes. In
Fig. 3(a), we plot the distributions of the axial stress in
the sample cross section at various applied strains. To
generate these plots, we divide the GNG Cu sample into 60
slabs in the y direction and then calculate the average of
nodal axial stresses in each slab. As such, the data points
in Fig. 3(a) correspond to the average axial stresses at
different locations of the cross section, and the solid lines
are the fitting curves. It is seen that at small applied strains,
the distribution of axial stresses in the cross section is
nearly uniform, e.g., the pink curve at a strain of 0.2%.
This is because all the grains undergo elastic deformation
and the linear elastic constitutive relation is independent
of grain size. As the applied strain continues to increase,
large grains in the central region of the cross section
begin to yield, causing a drastic slowdown of increase
of axial stresses in the central region. In contrast, small
grains near the surface continue the elastic deformation,
resulting in a more pronounced increase of axial stresses
near the surface. Due to the gradient grain sizes between
the central and surface regions, the cross-sectional stress
exhibits a smooth gradient variation, e.g., the blue curve at
astrain of 0.33%. Such gradient stress evolves as the applied
strain increases, e.g., the green curve at a strain of 0.5%.
Meanwhile, the plastically yielded domain expands from
the central region to the surface. Finally, the entire GNG
sample yields and the gradient stress is fully developed
without much further change as the applied strain is
increased, e.g., the red curve at a strain of 1%. This stage
corresponds to the plateau of the stress-strain curve in
Fig. 2.

Our CPFE simulation also reveals the gradient plastic
strains in GNG Cu. In Fig. 3(b), we plot the distributions
of axial plastic strains in the sample cross section at vari-
ous applied strains; here the axial plastic strains are evalu-
ated using the same averaging scheme as the axial stresses.
As the gradient stress, the gradient plastic strain is devel-
oped due to progressive yielding of grains with gradient
sizes. We note that the gradient plastic strains exhibit the
maximum in the center where large grains first attain yield
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Fig. 3. Distributions of (a) gradient axial stresses and (b) gradient axial plastic strains in the cross section at various applied strains as marked in Fig. 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Contours of axial stresses at the applied strain load of (a) 0.2% and (b) 1%. The color map is in the unit of MPa. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

points and the minimum at the surface where progres-
sive yielding arrives the latest. Hence, the sign of the plas-
tic strain gradient is opposite to that of the stress gradi-
ent, as seen from Fig. 3(a) and (b). More interestingly, the
gradient plastic strains arise under an overall uniform de-
formation of the GNG sample, and they stand in contrast
to the widely studied strain-gradient plasticity induced by
imposing a non-uniform deformation such as torsion [30],
bending [31], and indentation [32]. The plastic strain gra-
dient signifies the plastically inhomogeneous deformation
that can provide a non-local effect of material strengthen-
ing [33], which is additional to the strengthening gener-

ated by local plastic strains. In this work, we will not fur-
ther quantitatively evaluate the non-local strengthening
effect of plastic strain gradients, due to the lack of related
experimental characterization and data. Nonetheless, the
gradient plastic strain arising from gradient grain sizes rep-
resents a new material strengthening mechanism due to
non-homogeneous plastic deformation and warrant a sys-
tematic study in the future.

To further understand the spatial distributions of gra-
dient stresses and gradient plastic strains in GNG Cu,
we plot in Fig. 4 the contours of axial stresses at two
different applied strains, showing the evolving spatial
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Fig. 5. Contours of axial plastic strains at the applied strain load of (a) 0.33% and (b) 0.5%.

distribution of axial stresses. When the applied strain is
low, the deformation in gradient grains is elastic. At a rep-
resentative axial strain of 0.2%, the spatial stress distri-
bution in Fig. 4(a) is nearly uniform, consistent with the
plot of the cross-sectional stress distribution (e.g., the pink
curve) in Fig. 3(a). As the applied strain is increased, the
gradient stress develops due to progressive yielding of gra-
dient grains. At an applied strain of 1%, the spatial stress
distribution in Fig. 4(b) is clearly gradient, consistent with
the plot of the average stress distribution (e.g., the red
curve) in Fig. 3(a). Both Figs. 4(a) and (b) also show the in-
homogeneous spatial distribution of axial stresses in grains
with similar sizes, i.e., located at a similar distance to the
top/bottom free surface. Such inhomogeneities can be pri-
marily attributed to the random distribution of grain ori-
entations and partly to the small variation of grain sizes.
In addition, we plot in Fig. 5 the contours of axial plastic
strains at two intermediate applied strains, which exhibit
the progressive yielding responses: the larger, inhomoge-
neous plastic strains have been accumulated in the central
region, as opposed to the smaller, inhomogeneous plastic
strains in the top/bottom surface layers.

4. Conclusions and outlook

In this paper, we investigate the mechanics of GNG
Cu using a CPFE model. A two-dimensional structure of
columnar nano-grains with gradient grain sizes is built via
an adapted Voronoi tessellation method. The classical crys-
tal plasticity theory is extended to incorporate the grain-
size-dependent yield strengths. CPFE simulations are per-
formed to study the tensile responses of GNG Cu with gra-
dient grain sizes in the classical Hall-Petch regime. CPFE
results reveal the gradient stress and gradient plastic strain
in the cross section of GNG Cu. These spatial gradients arise
due to progressive attainment of yield points in grains with
gradient sizes and accordingly gradient slip resistances.

CPFE results also reveal the heterogeneous spatial distri-
butions of gradient stresses and gradient plastic strains,
which result from the combined effects of random grain
orientations and gradient grain sizes.

The most significant results of the present study are
the gradient stress and gradient plastic strain revealed by
CPFE simulations. Major implications and outlook from
this work are discussed as follows.

Stress and plastic strain gradients. GNG metals have a
unique microstructure with gradient grain sizes. As a re-
sult, the gradient stress and gradient plastic strain develop
in plastically deformed GNG samples. These spatial gradi-
ents arise due to the grain-size-dependent yield strengths.
Importantly, the gradient stress and plastic strain are gen-
erated under an overall uniform deformation, and they
stand in contrast to the widely studied strain-gradient
plasticity induced by imposing a non-uniform deformation
such as torsion [30], bending [31], and indentation [32]. To
understand the microscopic mechanisms underlying the
gradient plastic strains in a GNG structure, we note that the
geometrically-necessary and statistically-stored disloca-
tions are generally the plastic deformation carriers in crys-
tals [33]. The density of geometrically-necessary disloca-
tions, p°, depends on grain size, while that of statistically-
stored dislocations, p°, does not. Hence, p° is usually re-
sponsible for the grain size dependence of yield strength.
Ashby showed that pC is inversely proportional to grain
size, but is proportional to plastic strain [33]. On this
basis, we show in Fig. 6 a schematic of the spatial dis-
tribution of gradient geometrically-necessary dislocations
in a plastically deformed GNG structure with grain sizes
in the classical Hall-Petch regime—our CPFE study ad-
dresses this case. Under axial tension, big grains in the
central region have lower yield strengths and thus pro-
duce larger plastic strains and accordingly higher p°, com-
pared to small grains in the surface layer. Such a gradi-
ent distribution of p¢ underlies the gradient plastic strain.
Our molecular dynamics simulations, to be reported in
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Fig. 6. Schematic illustration of a gradient variation of geometrically necessary dislocations (represented by L) in GNG metals in the Hall-Petch regime:

pC gradually increases from the surface to the bulk.

a separate manuscript. [34], show that p® is gradient
in plastically deformed GNG Cu. Therefore, the gradient
geometrically-necessary dislocations furnish a plausible
microscopic mechanism of gradient plastic strains in GNG
metals.

Non-local effect of strengthening. Importantly, the plastic
strain gradient is expected to produce a non-local, higher-
order strengthening effect and thereby elevate the overall
yield strength. Such a strengthening effect has been well
recognized in previous studies of strain gradient plasticity
induced by applying non-uniform deformations [30-32].
In the future, it is appealing to perform a systematic
experimental study using samples with controlled GNG
structures, so as to provide a firm quantitative basis of the
strengthening effect of plastic strain gradients arising from
grain size gradients. The present crystal plasticity model
accounts for the grain size dependence of yield strengths,
but does not include the non-local strengthening effect of
plastic strain gradients. Hence, future study also requires
the development of a non-local plasticity model and
associated numerical procedure, so as to quantitatively
evaluate the effect of plastic strain gradients through
comparison with experimental measurements.

Grain size gradient. The spatial distribution of gradient
grain sizes is expected to critically affect the stress and
plastic strain gradients and accordingly the strengthening
effects on the GNG materials. In this work, we study an ex-
ample of GNG Cu having a linear variation of grain sizes,
with the corresponding grain size gradient of |dD/dy| ~
0.1. From the material design standpoint, the characteris-
tics of grain size gradient, including its magnitude and spa-
tial variation (e.g., constant gradient vs. varying gradient),
can serve as important design parameters for achieving an
optimal strength enhancement with retained ductility in
GNG materials. To this end, it is essential to develop novel
processing methods for achieving the controlled grain size
gradients. Meanwhile, the non-local CPFE models and sim-
ulations that include the strengthening effect of plastic
strain gradients can be used to guide the design of the op-
timal grain size gradient.

Random gradient microstructures. Heterogeneous mate-
rials can possess a random distribution of spatial gradi-
ents in grain size. For example, such heterogeneous mi-
crostructures are the prominent feature in metals and

alloys processed by additive manufacturing [35] but their
effects on the material mechanical responses remain little
understood. In addition, Wu et al. have recently demon-
strated the effects of a non-uniform distribution of grain
sizes on the strength-ductility synergy in titanium [36].
The present work is focused on a special class of GNG met-
als with a well-defined one-dimensional spatial gradient in
grain size from the surface to the bulk. It is relatively easy
to achieve the controlled processing of such gradient mi-
crostructures, thereby facilitating comparison between ex-
periment and modeling. A systematic study of such kind of
GNG metals will pave the way towards a quantitative un-
derstanding of effects of random gradient microstructures
on the mechanical behavior of a broader class of heteroge-
neous materials.

Competing deformation mechanisms. Our crystal plastic-
ity model accounts for the grain size dependent strengths
that are controlled by dislocation plasticity within grains.
In GNG materials, other competing deformation mecha-
nisms, such as coupled shear and migration of grain bound-
aries, can play an important role in the gradient mechan-
ical behavior of gradient microstructures. Particularly, ex-
periments have shown that the mechanically driven grain
growth becomes pronounced at large tensile strains, lead-
ing to mechanical softening that competes with dislocation
hardening [4]. The continuum finite element modeling of
the concurrent grain growth and grain plasticity in poly-
crystals, however, is challenging due to difficulties of track-
ing the moving grain boundaries. Hence, development of
advanced continuum modeling techniques is necessary to
simulate the concurrent processes of grain growth and
grain plasticity in gradient microstructures.
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