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a b s t r a c t

Neural networks (NNs) have demonstrated strong capabilities of learning constitutive relations from
big data. However, most NN-based constitutive models require experimental data from a considerable
number of stress–strain paths that are expensive to collect. Here, we develop a hybrid finite element
method - NN (FEM-NN) framework for learning the constitutive relations from full-field data. As a
result, the non-uniform displacement field from a deformed sample with geometrical inhomogeneities
can be used for training NNs. Such full-field data have the advantage of providing many different
stress–strain paths at different locations in the sample by a single test, thereby enabling the highly
efficient training of NNs. We apply FEM-NN simulations to learn the constitutive relations of several
model materials characterized by rate-independent J2 plasticity. These FEM-NN studies demonstrate
that the trained NNs produce the constitutive relations of plasticity with high accuracy and efficiency.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Constitutive relations of plasticity are critically important for
epresenting the mechanical behavior of materials beyond their
lastic limits. They are commonly established based on either
henomenological [1,2] or mechanistic models [3]. The devel-
pment of a phenomenological plasticity model usually requires
comprehensive, but expensive experimental program to cali-
rate the stress–strain responses along many loading paths. In
ontrast, the development of a mechanistic model, such as a
rystal plasticity model, relies on some physical understanding
f the microscopic deformation processes that can be difficult
o obtain. In recent years, a drastically different approach has
merged that pursues the data-driven learning of constitutive
elations through neural networks (NNs) [4–6]. Such a machine
earning approach does not necessarily require much human in-
ut and is particularly amenable to the big data generated from
xperiments.
The NN-based learning of constitutive relations has been ap-

lied to study problems involving heterogeneous elasticity
7,8], rate-independent plasticity [9–11], temperature- and rate-
ependent plasticity [12–14], path-dependent plasticity [15–17],
sotropic plasticity [18–20], thermodynamically-informed plas-
icity [21] and crystal plasticity [22]. To train these NNs, most

∗ Corresponding author at: Department of Nuclear Science and Engineering,
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studies require experimental measurements from a considerable
number of stress–strain paths, which are expensive to collect. It
can become much more expensive to study the effects of multiple
principal elements on constitutive relations when exploring the
nearly infinite compositional space of high-entropy alloys [23,24].
Moreover, when the conventional tests of dog-bone-shaped ten-
sile specimens are used, only the total force–displacement data
are collected for training these NNs. This mode of machine learn-
ing does not represent an efficient use of materials and testing
effort. Much unused information, such as the spatial distribution
of displacements, could be exploited to expedite the learning of
constitutive relations.

Recently, a hybrid finite element method - NN (FEM-NN)
framework was developed to augment machine learning with
physical constraints in the form of partial differential equations
[25], and it was implemented as an extension of the open-source
FEM framework FEniCS [26]. This framework makes it possible
to learn constitutive relations from the observations of full-field
data. In this work, we adapt the hybrid FEM-NN framework [25]
to machine-learn constitutive relations of plasticity from the full-
field displacement data of deformed samples, together with the
sample-level force–displacement data. The constitutive relations
are learned through the hybrid FEM-NN simulations with an
exemplar physical constraint in the form of rate-independent
J2 plasticity. Namely, the yield stress is taken as a function of
equivalent plastic strain and learned through a NN. The exper-
imentally measurable full-field data can be used as the ground

truth. Each training iteration involves the following steps: (i)

https://doi.org/10.1016/j.eml.2022.101645
http://www.elsevier.com/locate/eml
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eneration/update of the NN-based plasticity relation; (ii) solving
nonlinear FEM problem for obtaining the non-uniform displace-
ent field of a deformed sample using the plasticity relation un-
er training; (iii) computing the cost and its gradient by reverse
ode algorithmic differentiation [27] for backpropagation to-
ard minimizing discrepancies between the FEM-NN simulation
esults with the ground truth [28].

We emphasize that the non-uniform displacement field is an
xample of the full-field data used for training NNs, and it can be
enerated by geometrical inhomogeneities such as holes and sur-
ace undulations that are intentionally introduced into a tensile
ample. As such, many different stress–strain paths are produced
t different locations in the sample by a single test and thus
nable the highly efficient training of NNs. To expedite the devel-
pment of the FEM-NN framework, we generate the ground truth
hrough a surrogate computational model, which provides the
eference full-field displacement data of a deformed sample from
he FEM simulation based on a conventional rate-independent J2
lasticity model. In future studies, the ground truth from this sur-
ogate model can be replaced by the experimental full-field data
btained from digital image correlation (DIC) [29] measurements.
n this work, we further test the trained constitutive relations
f plasticity using sample geometries that are not included in
he training set. We also study materials with different strain
ardening behaviors to demonstrate the general applicability of
he hybrid FEM-NN framework for learning constitutive relations
f plasticity.

. A hybrid FEM-NN framework for learning constitutive rela-
ions

.1. Displacement-based finite element method

The hybrid FEM-NN framework is developed by extending
he general displacement-based finite element analysis. Here we
escribe its governing equations by representing tensors and
ectors as bold symbols. The strong form of equilibrium equations
s given by

· σ+ b = 0 (1)

here σ is the Cauchy stress tensor and b is the body force per
nit volume. Focusing on small strain analysis, the strain tensor
is related to the displacement vector u by

=
1
2

[
∇u + (∇u)T

]
(2)

Since σ depends on ε through the constitutive relation used, the
combination of Eqs. (1) and (2) allows one to solve the displace-
ment field u that satisfies the strong form of stress equilibrium.
In contrast, the weak form of equilibrium equations can be ex-
pressed in terms of the virtual work principle over a volume of
the material V bounded by its surface S∫
V
σ : δε̇dV =

∫
S
t · δvdS +

∫
V
b · δvdV (3)

where δv is the virtual velocity, δε̇ =
1
2

[
∇δv + (∇δv)T

]
is the

irtual strain rate, and t is the surface traction vector on S. In
q. (3), σ also depends on the displacement field u through the
onstitutive relation used. The virtual work equation of Eq. (3) can
e discretized through finite elements to solve the displacement
ield u by Newton’s method [30].

In this work, the FEM procedure is implemented using the
pen-source FEM library FEniCS [26] in Python. The variational
roblem could be specified in FEniCS using the domain-specific
anguage UFL [31], such as the following Python statement

= inner σ, δε dx (4)
( ) a

2

where F stands for the formula of the variational problem, the
‘‘inner’’ represents the scalar product of two tensors through
the double dot operator in Eq. (3), and dx indicates the integra-
tion over the whole volume V. In Eq. (4), the stress σ depends
on an unknown displacement field u, and δε is the ‘‘virtual’’
strain field given by the trial function δv. Here, we assume only
the displacement boundary conditions are applied, and no body
force is present, such that both terms on the right- hand side of
Eq. (3) become zeros. After defining the variational form of stress
equilibrium in UFL, we use the FEniCS interface to automatically
assemble and solve the nonlinear variational system F = 0 with
Newton’s method. The Jacobian of such a system is calculated
analytically by automatic differentiation in UFL.

2.2. Constitutive relations of plasticity

The constitutive relations are learned through an exemplar
physical constraint in the form of rate-independent J2 plasticity.
Specifically, the total strain rate is decomposed into the elastic
strain rate ε̇e and plastic strain rate ε̇p

ε̇ = ε̇e + ε̇p (5)

The elastic strain rate determines the stress rate according to

σ̇ = λtr
(
ε̇e

)
+ 2µε̇e (6)

where the Lamé constants λ and µ are related to Young’s modulus
E and Poisson’s ratio ν by λ =

Eν
(1+ν)(1−2ν)

and µ =
E

2(1+ν)
.

ssuming associated plastic flow, the plastic strain rate is given
y

˙
p

= ε̇
p 3
2

s
σ

(7)

where ε̇
p
is the equivalent plastic strain rate, s is the deviatoric

stress tensor

s = σ−
1
3
tr (σ) I (8)

and σ is the von Mises effective stress

σ =

√
3
2
s : s (9)

In the conventional rate-independent J2 plasticity model, the
yield criterion is met when σ equals the yield stress σy, which
is a function of the equivalent plastic strain εp

=
∫ t
0 ε̇

p
dt ′ at

time t. To study the quasi-static response of a rate-independent
material, the time t has no physical meaning and represents a
loading sequence. In the present hybrid FEM-NN framework, the
yield criterion is met when σ equals the yield stress given by a
NN, denoted as σNN

y . Note that σNN
y depends on εp without an

explicit function form and is determined by training a NN. When
σ is smaller than the yield stress, the material behaves elastically
and produces zero plastic strain rate.

2.3. Integration procedure

To solve a nonlinear problem under an applied load, we break
the FEM simulation into a total of N load increments and obtain
the equilibrium solution via time integration at the end of each
load increment. It usually takes several iterations to find an ac-
ceptable solution of a load increment by Newton’s method. Here
we introduce a smoothing scheme of elastic–plastic transition
which can eliminate the need for iterations and also enhance
the stability of NN training. The sum of all of the incremental
responses gives the integration solution for the applied load.

At the load increment n, the stress–strain response at each
aterial point is determined using the standard radial return
lgorithm [32]. That is, the elastic predictor σpr is calculated by
ssuming the strain increment ∆ε is purely elastic,
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pr
= σn + λtr (∆ε) + 2µ∆ε (10)

where σn is the stress tensor at the increment n. Then the de-
viatoric part of σpr is calculated as spr = σpr −

1
3 tr (σpr) I and

he corresponding effective stress as σ pr
=

√
3
2 s

pr : spr. If σ pr <

y
(
εp
n

)
, the strain increment is indeed purely elastic, such that

he plastic strain increment ∆εp
= 0 and the stress tensor at

he end of this load increment is simply σpr. Otherwise, the back-
ard Euler method is used to determine ∆εp via the following
onlinear equation [30],

σ pr
− 3µ∆εp

= σy
(
εp
n + ∆εp) (11)

ince the elastic–plastic transition often involves an abrupt
hange of the slope in the stress–strain curve, this may cause a
ailure in the backpropagation during training of σNN

y . To resolve
this issue, we smoothen the elastic–plastic transition by using the
sigmoid function S (x) = 1/

(
1 + e−x

)
, a widely used activation

function in NN studies [33]. Namely, Eq. (11) is modified as

σ pr
− 3µ∆εp

= f
(
σ pr, σy

)
σy

(
εp
n + ∆εp) (12)

here the indicator function f is defined as f
(
σ pr, σy

)
≡(

k
(
σ pr

− σy
))
; when k is sufficiently large, this indicator func-

tion gives a smooth transition between the elastic (f = 0) and
plastic (f = 1) response. To the first order of ∆εp, we expand
σNN
y

(
εp
n + ∆εp)

≈ σy
(
εp
n

)
+ H∆εp, where H is the hardening

modulus H =
∂σy
∂εp calculated by automatic differentiation in

FEniCS. Plugging this expansion into Eq. (12), we obtain the
approximate equivalent plastic strain increment

∆εp
≈ f

(
σ pr, σy

) σ pr
− σy

(
εp
n

)
3µ + H

(13)

hile solving ∆εp through Eq. (11) requires numerical iterations
n a load increment, Eq. (13) is an explicit solution of ∆εp and
thus eliminates the need for iterations. The above integration
procedure is implemented in FEniCS [26]. In Eq. (13), the yield
stress σy

(
εp) can be either a prescribed function, denoted as σ ref

y ,
to generate the ground truth data or a NN, denoted as σNN

y , to
train the constitutive relations of plasticity. The NN representa-
tion of constitutive relations is illustrated in Fig. 1, where the NN
constitutive relation in the left module of Fig. 1a provides the
output of yield stresses based on the input of accumulated plastic
strains.

2.4. Training NNs from full-field data

The NN-based constitutive relation of plasticity in Section 2.3
can be trained using the experimentally measurable full-field
data, such as the non-uniform displacement of a tensile sam-
ple containing geometrical heterogeneities, together with the
sample-level force–displacement data. In this work, we consider
a thin-plate sample containing five randomly positioned circular
holes. The elastic and plastic properties of the material are ho-
mogeneous. We generate the ground truth from a surrogate com-
putational model instead of experimental measurements. That is,
the material in this surrogate model obeys the J2 plasticity with
a specified yield stress function σ ref

y

(
εp), and the corresponding

displacement field in the plate is solved by implementing the in-
tegration procedure in Section 2.3 in FEniCS. The obtained ground
truth data include the in-plane displacement field uref

n and the
sample-level force frefn versus displacement uref

n for all the load in-
crements n = 1 . . .N . During each training iteration (see Fig. 1a),
we obtain the hybrid FEM-NN solution of the plate using the σNN

y
nder training. The obtained data include the displacement field
NN and the sample-level force fNN versus displacement uNN for
n n n

3

all the load increments n = 1 . . .N . Such training iterations aim
o minimize the loss function

=

N∑
n=1

[
λu

1
V

∫
V

uref
n − uNN

n

umax
x

2

dV + λt

 frefn − fNNn
f max
x

2
]

(14)

here ∥·∥ represent the L2 vector norm; umax
x and f max

x are the
aximum displacement and force in the x-direction from the
round truth, respectively; λu and λt are the weights used to
alance the relative contributions to the loss from discrepancies
f the displacement field and external load between the hybrid
EM-NN result and the ground truth.
The detailed FEM-NN flowchart is described in Fig. 1b. Note

hat in order to update the NN weights and biases during each
raining iteration, the gradients of the loss with respect to these
eights and biases are needed. Since the loss function is indi-
ectly related to the NN weights and biases through the FEM
olution, we employ reverse mode algorithmic differentiation to
alculate the gradients by the adjoint of an expansion through the
hain rule. It is challenging to obtain the automated adjoint for
ackpropagation. This operation is enabled by dolfin-adjoint [25,
7] and highlighted in red in Fig. 1b. After the loss function and
ts gradient are evaluated, the limited-memory BFGS algorithm
28] in the open-source Python library SciPy [34] is invoked to
inimize the loss and update the NN weights and biases. Hence,
ach training iteration (Fig. 1b) involves an FEM simulation using
he NN-based plasticity relation under training, evaluation of the
oss and its gradients, backpropagation, update of NN weights
nd biases. Such iterations are repeated until the convergence
olerance for the loss function is met.

The dimension of the simulated thin plate in Fig. 2a is 100 cm
50 cm × 1 cm, and the radii of the circular holes are 5 cm. A

D mesh consisting of 4155 four-node tetrahedral C3D4 elements
s generated using an Abaqus script [30]. The Abaqus mesh is
onverted to an XDMF file by meshio [35] to feed into FEniCS. The
ample is subjected to three symmetrical boundary conditions on
he surfaces of x = 0, y = 0 and z = 0. A constant velocity
= 0.01 cm/s is applied on the right side of the sample (x = 100
m) for 20 s, giving a total sample-level tensile strain of 0.2%.
he FEM simulations are solved with the time step of 1.0 s. As
oted earlier, we focus on the quasi-static response of a rate-
ndependent material, so that the loading time only represents
loading sequence instead of a physical time. The elastic prop-
rties are taken as follows: Young’s modulus E = 200 GPa and
oisson’s ratio v = 0.3. The ground truth data are generated for
nonlinear strain hardening material characterized by the yield
tress function of σ ref

y = 100 + 50 tanh
(
2000εp) MPa. When the

corresponding NN-based yield stress σNN
y is trained, we scale the

NN input and output to improve the stability and efficiency of
training,

σNN
y

(
εp) /σ0 =

⏐⏐NN (
κεp)⏐⏐ (15)

here σ0 ( = 100 MPa) is the initial guess of the yield stress and
he dimensionless parameter κ( = 100) scales εp in the activation
functions (see below).

The NN used in this work consists of one hidden layer with
three neurons. The activation functions in all the neurons are
chosen to be the following exponential linear unit (ELU) function
[36].

ELU (x) =

{
x if x ≥ 0
exp (x) − 1 if x < 0 (16)

The output of this single hidden layer NN can be expressed as

NN (x) =

3∑
wi1ELU (wi0x + bi0) + b1 (17)
i=1
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Fig. 1. Illustration of the hybrid FEM-NN framework for learning constitutive relations based on full-field data. (a) Summary of FEM-NN training iterations. Each
iteration involves the generation/update of the NN; solving a FEM problem for obtaining the displacement field of a deformed sample using the NN-based plasticity
relation under training; computing the cost function and its gradient for backpropagation toward minimizing the discrepancy between the FEM-NN simulation results
with the ground truth. (b) Flowchart of the hybrid FEM-NN algorithm. Backpropagation to update the NN yield stress is highlighted in red, as this step requires
a key operation of reverse mode algorithmic differentiation. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
where wi1 and wi0 represent the weights in the three neurons (i
1. . .3), and bi0 and b1 represent the corresponding biases. The

nitial weights follow a Gaussian distribution with mean 0 and
ariance 1 and the initial biases are 0. The weights in Eq. (14)
re taken as λu = 1 and λt = 1 such that the displacement and
orce have equal importance in the loss function. The convergence
olerance for L-BFGS optimization is 1 × 10−10. In addition to the
ocused study of a nonlinear strain hardening material, both the
erfect plastic and linear strain hardening materials are studied
o demonstrate the general applicability of the hybrid FEM-NN
pproach for learning constitutive relations of plasticity.

. Results and discussion

In this section, we focus on the hybrid FEM-NN results for
nonlinear strain hardening material characterized by the yield
tress function σ ref

y = 100+ 50 tanh
(
2000εp) MPa. The FEM-NN

esults are compared with the FEM solutions based on σ ref
y , the

atter of which are referred to the reference results representing
4

the ground truth. Fig. 2a shows the finite element mesh of the
thin plate. During the training iterations of σNN

y , both the loss and
gradient magnitude are reduced significantly after 100 iterations
(Fig. 2b). Given the relatively small NN used, rapid convergence is
achieved by only 195 L-BFGS iterations. Using the trained NN, we
calculate the FEM-NN-predicted response of sample-level force
versus displacement, which agrees closely with the reference
result (Fig. 2c). The mean absolute percentage error (MAPE) is
0.083%. We also use the trained NN to simulate the tensile stress–
strain response by a single element that agrees closely with the
reference result (Fig. 2d). The MAPE is 0.375%. While the full-
field data for NN training are taken from the thin plate loaded to
the maximum sample-level strain of 0.2%, the local strains near
the holes are substantially larger and thus enable the effective
training of σNN

y through many large stress–strain pairs. Hence,
a close agreement between the predicted and reference results
is achieved for the material stress–strain response when the
yield stress becomes saturated, i.e., at the strain up to 0.5%. The
consistently small MAPEs in both the predicted and reference
results indicate no significant overfitting in our FEM-NN results.
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Fig. 2. FEM-NN results for learning the constitutive relation of a nonlinear strain-hardened material. (a) FEM setup of a thin plate containing randomly distributed
holes. (b) Loss function and its gradient magnitude as functions of the number of training iterations by the L-BFGS algorithm. (c) Comparison between the reference and
FEM-NN-predicted results of sample-level force–displacement response. (d) Comparison between the reference and FEM-NN-predicted results of tensile stress–strain
response.

Fig. 3. Comparison between the reference and FEM-NN-predicted strain fields. (a) Contour plot of the reference strain εref
xx along the horizontal direction of tensile

loading. (b) Reference strain εref
yy along the transverse direction. (c) Predicted strain εNN

xx . (d) Predicted strain εNN
yy . (e) Difference between (a) and (c) εNN

xx − εref
xx . (f)

Difference between (b) and (d) εNN
yy − εref

yy . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5
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Fig. 4. FEM-NN results for a thin-plate geometry that is not included in the training set. (a) FEM mesh in the plate with hole arrangement different from that in
ig. 2(a). (b) Comparison between the reference and FEM-NN-predicted results of sample-level force–displacement response.
Fig. 5. Comparison between the reference and FEM-NN-predicted results of tensile stress–strain responses for (a) a perfectly plastic material, and (b) a linearly
strain-hardened material.
Although the displacement field is directly observable from
xperiments, its spatial derivatives give the strain field that pro-
ides more physically transparent information on the deforma-
ion distribution. In Fig. 3, we compare the FEM-NN-predicted
nd reference strain contour plots in the plate at the maximum
ample-level strain of 0.2%. All strain contours are plotted using
he open-source package ParaView [37]. We focus on the compar-
son of in-plane normal strain components of εxx and εyy. It is seen
rom Fig. 3a that a strain-localized band arises in between the two
eighboring holes close to the right end of the plate, giving about
en times higher εref

xx values than the sample-average tensile strain
f 0.2%. Fig. 3b shows a similar strain localized band, where εref

yy
s elevated but lower than εref

xx . This is because εref
yy mainly results

rom the Poisson’s effect associated with εref
xx and thus give values

smaller than εref
xx , while εref

xx reflects a direct response from the
applied tensile load along the x-direction. More importantly, the
FEM-NN-predicted strain contour plots in Fig. 3c and d are highly
consistent with the reference results in Fig. 3a and b, respectively.
In addition, the differences of εNN

xx − εref
xx and εNN

yy − εref
yy are plotted

n Fig. 3e and f, respectively. Most areas have differences close to
ero (green), while some minor differences are observed in strain-
ocalized bands. Note that the maximum strain differences are
ne order of magnitude smaller than the corresponding reference
trains, showing the accuracy of FEM-NN predictions.
We test the trained NN using a thin plate not included in the

raining set. As shown in Fig. 4a, this thin plate has the same
ize, but a different hole arrangement compared with the plate
Fig. 2a) used for NN training. The predicted sample-level force–

isplacement curve in Fig. 4b closely matches the reference result,

6

with the MAPE of 0.055%. This test shows the high accuracy
and transferability of the trained NN from the hybrid FEM-NN
approach.

We also test the general applicability of the hybrid FEM-NN
approach for learning different constitutive relations of plasticity.
To this end, we train the NN-based plasticity relations using the
ground truths given by other strain hardening models. With the
same thin plate in Fig. 2a, the ground truths are generated by a
perfect plasticity model with σ ref

y = 150 MPa and a linear harden-
ing model with σ ref

y (εp) = 100+ 50000εp MPa. After the training
of respective σNN

y , the FEM-NN predictions are validated by the
simulations of tensile stress–strain response through a single
element, are shown in Fig. 5. The FEM-NN-predicted stress–strain
curves are consistent with the ground truths; the MAPEs are
0.029% and 0.176% for perfect plastic and linear strain hardening
materials, respectively. These tests demonstrate the high accuracy
and general applicability of learning the constitutive relations of
plasticity by the hybrid FEM-NN approach.

The present FEM-NN framework shows excellent capability
and flexibility for learning the constitutive relations of rate-
independent J2 plasticity. The hybrid FEM-NN training of consti-
tutive relations utilizes both the full-field and sample-level data,
while the conventional training only relies on the latter. We focus
on learning the constitutive relations that depend on accumulated
plastic strain in this work, and are working to extend the FEM-NN
framework for learning more complex constitutive relations de-
pendent on temperature, strain rate, composition, etc. The FEM-
NN learning of complex constitutive relations will be reported
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n a future paper. We envision the hybrid FEM-NN approach can
e combined with high throughput experiments to accelerate the
aterial design and selection [38], for example, when exploring

he large composition space of high-entropy alloys. This inte-
rated approach may greatly accelerate the screening of alloy
ompositions for further in-depth investigation.

. Conclusion

We have developed a hybrid FEM-NN framework for learning
onstitutive relations using the full-field data such as a displace-
ent field, in conjunction with the sample-level data such as a

orce–displacement curve. The non-uniform displacement field in
deformed sample is used for training NNs. It has the advantage
f providing many different stress–strain paths at different loca-
ions in the sample by a single test, thereby enabling the highly
fficient training of NNs. Our studies of the model materials
haracterized by rate-independent J2 plasticity demonstrate that
he FEM-NN framework can learn their constitutive relations ac-
urately and efficiently. The open-source FEM framework FEniCS
s a general and powerful platform that can greatly facilitate the
uture development of the FEM-NN approach. Furthermore, the
N is designed to be compatible with the displacement-based
EM framework, such that the trained NN constitutive relations
an be transferred to other FEM programs without additional
odification. Broadly, the integration of the FEM-NN approach
nd full-field data enables the effective constitutive modeling of
aterials through big data.
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