
Atomistic study of nanotwins in NiTi shape memory alloys

Yuan Zhong, Ken Gall, and Ting Zhua)

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 4 April 2011; accepted 24 June 2011; published online 11 August 2011)

Atomistic simulations are performed to study the structure and geometrical limit of nanoscale

twins in NiTi shape memory alloys. We analyze compound twins as narrow as �1 nm, involving

a few atomic layers. A novel nanotwinned structure is found, forming through the martensitic

transformation of sublattices. We predict the temperatures of phase transformation, which are

consistent with experimental measurements. The results provide an atomistic basis for further

study of nanometer length scale effects on the martensitic phase transformation and shape

memory behavior. VC 2011 American Institute of Physics. [doi:10.1063/1.3621429]

I. INTRODUCTION

The generation of large and reversible strains in shape

memory alloys is governed by the diffusionless martensitic

phase transformation of a crystal lattice in response to

applied thermomechanical loadings.1–5 Recent development

in the processing, characterization, and nanomechanical test-

ing of nanostructured shape memory alloys provides oppor-

tunities of revealing the nanometer length scale effects on

martensitic phase transformation, and may offer practical

solutions of efficient shape memory, actuation, and mechani-

cal damping in microscale and nanoscale devices.6–21

Understanding the martensitic transformation in nano-

structured shape memory alloys is predicated upon knowing

the structures of various phases. However, due to the struc-

tural complexity at the nanometer scale, it is nontrivial to gen-

erate their atomic configurations for further study. To this end,

here we combine the crystallographic theory and atomistic

simulation to study the nanotwinned structure and phase trans-

formation. We utilize the crystallographic theory of twinned

martensite22,23 to construct the initial twin structures. Then the

atomistic calculation is performed by using an empirical

interatomic potential,24 which has been benchmarked by ex-

perimental values and first principles calculations. Our atomis-

tic simulation goes beyond the crystallographic theory by

providing more structural details and mechanistic insights at

the sublattice level. Compared to the first principles calcula-

tion,25–32 it enables an efficient exploration of twinned

microstructures, and can be further utilized to study their spa-

tial-temporal evolution and associated phenomena of plastic-

ity and fracture at the atomic scale. Considering the

complexity of martensite microstructures, as well as a large

range of time and length scales involved in the martensitic

transformation processes, the empirical potential-based atom-

istic modeling approach developed is expected to play an im-

portant role in bridging experiments, continuum models,33–44

and ab initio calculations for understanding the transformation

mechanisms in shape memory alloys.

This work is focused on understanding the atomic-scale

twin structures in NiTi shape memory alloys, and is motivated

by recent high resolution transmission electron microcopy

(HRTEM) imaging of nanocrystalline NiTi, showing the

unique martensitic phase of nanoscale compound twins span-

ning the entire nanosized grain.26 It is useful to recall that a

typical martensitic phase transition in NiTi involves the trans-

formation from a high temperature B2 cubic austenite phase

to a low temperature B190 monoclinic martensitic phase.5 The

most characteristic feature of martensitic transformation is the

formation of twins, where the arrangement of the lattice on

one side of the twin boundary plane is a mirror reflection of

those on the other. Twin martensites are conventionally classi-

fied as type I (i.e., the twin plane is a rational crystal plane),

type II (i.e., the twin shear is a rational crystallographic direc-

tion), and compound twin (both the twin plane and twin shear

are rational); their rigorous definitions can be found, e.g., in

the review by Christian and Mahajan.2 In coarse-grained

NiTi, type I and type II twins are more often observed than

compound twins. This can be rationalized in terms of the

requirement of deformation compatibility at extended interfa-

ces (i.e., habit planes) between martensite and austenite.

Namely, compared to the compound twins, the formation of

type I and type II twins can better achieve geometrical com-

patibility with the parent B2 phase of austenite.45 In contrast,

compound twins often form in nanocrystalline NiTi.26

Further, the twin-related variants can span the entire nano-

sized grain, so that the kinematic incompatibility caused by

martensitic transformation is accommodated by the grain

boundary rather than the habit plane. Such a size effect of

nanostructures on martensitic phase transformation has been

studied by Waitz and co-workers by considering the compet-

ing effects of twin boundary, grain boundary, and elastic ener-

gies associated with the twin variants and the surrounding

matrix.26,42 However, it is not yet well understood regarding

the atomic basis of why they form and how stable they are.

In this paper, we study the atomic-level details of nano-

twinned structures by combining the crystallographic theory

and atomistic simulation. We analyze the compound twins as

narrow as �1 nm, involving a few atomic layers. The

HRTEM images of twinned structures26 provide the validation

for our simulations. We discover a novel transformation mode

that may have implications for the martensitic phase transition

of materials with the complex lattice structure, common to

crystalline alloys and compounds. We also study temperature-

driven phase transformations and the size effects. The resultsa)Electronic mail: ting.zhu@me.gatech.edu.
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provide an atomistic structural basis for further investigation

of martensitic phase transformation and shape memory behav-

ior of the shape memory alloys at the nanometer scale.46

II. METHODS

A. Interatomic potential

A many-body interatomic potential is used to describe

the NiTi system. This potential was originally developed by

Lai and Liu,24 but is improved in this work with a smooth

cutoff behavior to avoid the diverging forces in simulations

involving large atomic displacements. As a Finnis–Sinclair-

type potential,47 the potential function is constructed by

using the second-moment approximation of the tight-binding

theory. The total energy of the system is expressed as

E ¼
X

i

X
j 6¼i

Aab exp �pab
rij

dab
� 1

� �� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j6¼i

FðrijÞ
s8<

:
9=
;;
(1)

where

FðrijÞ ¼ n2
ab exp �2qab

rij

dab
� 1

� �� �
: (2)

Here, rij is the distance between atom i and j, and a and b
denote the type of atoms (Ni or Ti) at sites i and j, respec-

tively. In Eq. (1), the first term in the curly bracket describes

the pair interaction and the second term represents the

many-body effect. The potential parameters were fitted to

the properties of the B2 phase at 0 K from first principles cal-

culations, and the potential cutoff radius rc was determined

to be 4.2 Å.24 However, FðrijÞ in Eq. (2) and its derivative

about rij are nonzero at rc. To be suitable for use in molecu-

lar statics and dynamics simulations that generally require

smooth energies and interatomic forces, we have modified

the potential by changing FðrijÞ in Eq. (2) as follows,

FðrijÞ ¼
n2

ab exp �2qab
rij

dab
� 1

� �h i
; rij � r1

c3;abðrij � r1Þ3 þ c2;abðrij � r1Þ2 þ c1;abðrij � r1Þ þ c0;ab; r1 < rij � rc

(
: (3)

In Eq. (3), for given r1 the four coefficients of c0;ab to c3;ab
are solely determined by four continuity conditions, namely,

FðrijÞ and its first derivative are continuous at both r1 and rc.

We determine r1 by optimizing the predicted properties.

The potential parameters are listed in Table I with

r1¼ 4.0 Å and rc¼ 4.2 Å. This modified potential not only

removes the discontinuities at rc, but also improves the

predicted properties, including the lattice constant and

energy of various phases of NiTi, as compared with ab ini-
tio calculations in Table II. In our atomistic calculations of

single phases, both the atomic coordinates, as well as the

side lengths and angles of the simulation box are fully

relaxed by using the stress-controlled conjugate gradient

energy minimization.48,49

B. Crystallographic theory of twinned martensite

We have utilized the crystallographic theory of twinned

martensite to facilitate the atomistic simulation of nanotwins

in NiTi. Although it is desirable to generate and analyze the

nanotwins by direct molecular dynamics (MD) simulations,

the attainable twin structures are limited because of the well-

known time scale limitation of MD and the associated low

efficiency of sampling the atomistic energy landscape when

the atomic-level structure is not precisely known. To over-

come these limitations, we construct the initial twin struc-

TABLE I. Potential parameters for NiTi.

Ni–Ni Ti–Ti Ni–Ti or Ti–Ni

D (Å) 2.49 2.95 2.607

A (eV) 0.104 0.153 0.3

P 11.198 9.253 7.9

n (eV) 1.591 1.879 2.48

Q 2.413 2.513 3.002

c3 27.3341 122.395 47.851 3

c2 �7.54308 �34.205 �12.923 62

c1 �0.26286 �1.005 4 �0.572 708

c0 0.13561 0.590 12 0.248 676

TABLE II. Comparison of lattice constant, a, b, c, monocline angle b, and

the energy per atom E for single phases and compound twins, as well as their

differences with the energy of the B2 phase EB2. Results from this work are

indicated by the Finnis–Sinclair (FS) potential. The experimental and

ab initio values are taken from Knowles and Smith (Ref. 50) and Wagner

and Windl (Ref. 32), respectively. The last two rows list the properties of

nanotwins with monolayers of monoclinic unit cells, shown in Figs. 6(b) and

6(c), respectively.

Structure a (Å) b (Å) c (Å) b(deg) E (eV) E� EB2 (eV)

B2 Experiment 3.015 4.264 4.264 90

FS-potential 3.008 4.253 4.253 90 �5.022

Ab initio 3.008 4.253 4.253 90

BCO FS-potential 2.994 4.001 4.883 107.86 �5.069 �0.047

Ab initio 2.953 3.993 4.951 108.52 �0.050

B190 Experiment 2.889 4.120 4.622 96.8

FS-potential 3.005 4.022 4.466 98.08 �5.073 �0.051

Ab initio 2.941 4.035 4.685 97.78 �0.044

B190 Twina 3.062 4.018 4.391 Ti 94.44 �5.058 �0.036

Ni 93.96

B190 Twinb 3.011 4.022 4.464 98.43 �5.075 �0.053

3.011 4.022 4.416 90

aFigure 6(b).
bFigure 6(c).
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tures based on the crystallographic theory of twinned

martensite, and then relax the system by using the stress-

controlled conjugate gradient energy minimization. In this

way, various type I, type II, and compound twins can be

accessed for detailed analyses. Moreover, the direct atomis-

tic simulation can go beyond the crystallographic theory to

reveal more sublattice level information and insights.

The crystallographic theory of twinned martensite

requires an input of the transformation matrix from the cubic

parent phase to the martensitic phase. With this information,

the twinning elements, including the twin plane normal and

twin shear, can be predicted by solving the twinning equation

that governs the kinematic compatibility between adjoining

twin variants. Consider, as an example, the martensitic trans-

formation from the B2 to B190 phase. Following the notation

used by Knowles and Smith,50 the transformation takes a

tetragonal unit cell of the parent B2 phase (Fig. 1) into a

monoclinic cell of the product B190 phase. The associated lat-

tice deformation involves a uniform expansion or contraction

of the tetragonal cell, followed by a simple shear. In the ortho-

normal basis ði0; j0; k0Þ given in Fig. 1, the deformation gradi-

ent matrix can be represented by

F ¼ 1

a0

b=
ffiffiffi
2
p

0 0

0 c sin b=
ffiffiffi
2
p

0

0 �c cos b=
ffiffiffi
2
p

a

2
4

3
5; (4)

where a0 is the lattice parameter of the cubic unit cell in B2,

a, b, c are the lattice parameters of the monoclinic unit cell

in B190, and b is the associated monoclinic angle between

the edges with lengths of a and c. Prior to martensitic trans-

formation, a ¼ a0, b ¼ c ¼
ffiffiffi
2
p

a0, and b ¼ 90�. The shuf-

fling of atoms in the cell was ignored in the crystallographic

theory of martensitic transformation.50

Twin variants of the B190 phase should satisfy the kine-

matic compatibility condition given by the twinning equation4

QFI � FJ ¼ m� n; (5)

where FI and FJ denote the symmetry-related deformation

gradient of variant I and J, respectively, n is the normal vec-

tor of the twinning plane at the untransformed reference B2

state, m is the twinning shear vector at the transformed

current B190 state, and ½m� n�ij ¼ minj. Equation (5) essen-

tially requires that any vector lying in the twin plane, which

separates the two adjoining variants, should undergo the

same deformation when viewed from either side. Note that Q

represents an additional rotation of variant I after the transfor-

mation by FI; namely, the total transformation imposed on

variant I is QFI. The rotation matrix Q is needed whenever

the orientations of the twin plane are different after the trans-

formations of variant I by FI and variant J by FJ . For the mar-

tensitic transformation from the cubic B2 to monoclinic B190

phase, there are 12 distinct variants. The transformation is

conventionally described in terms of the symmetric deforma-

tion matrix U obtained from the polar decomposition of de-

formation gradient F. Then there are 132 possible variant

pairs between 12 monoclinic variants and those pairs can be

classified as type I, type II, or compound twins,2 as discussed

in the introduction. Solutions of Eq. (5) for type I, type II,

and compound twins have been cataloged by Hane and

Shield.45 In this work, we focus on compound twins in order

to directly compare simulations with available HRTEM

images of twinned structures. Detailed solutions of compound

twins suitable for atomistic calculations in the periodic super-

cell, including FI, FJ , m, and n, are given in the Appendix.

Our method is general and applicable to create type I and

type II twins, and it can be further developed to produce com-

plex twin microstructures (e.g., twinned wedges in the austen-

ite matrix4) for providing an atomistic structural basis of

studying their spatial-temporal evolution.

III. RESULTS AND DISCUSSION

A. Single phases

Figure 2 shows the relaxed structures of the B2, B190,
and base-centered orthorhombic (BCO) single phases of

equiatomic NiTi. Table II lists the lattice parameter, mono-

clinic angle and energy per atom for each phase calculated

by the interatomic potential. Most results given by the poten-

tial are close to the available experimental values and ab

FIG. 1. (Color online) Schematics of a tetragonal unit cell (green lines) and

four cubic unit cells (black lines) in the lattice of untransformed B2 parent

phase. Only Ni atoms are shown for clarity. The orthonormal vectors ði; j; kÞ
are along the cube axes, and the orthonormal vectors ði0; j0; k0Þ are along the

cube directions of ½1�10�, ½110�, and ½001�, respectively.

FIG. 2. (Color online) Relaxed atomic structures of single phase, equia-

tomic NiTi, viewed from the [100] direction in the ði0; j0; k0Þ basis of Fig. 1.

(a) B2 phase, the rectangle indicates a tetragonal unit cell. (b) B190 phase,

the parallelogram indicates a monoclinic unit cell with the monoclinic angle

b � 98�. (c) Base-centered orthorhombic (BCO) phases, the rectangle (white

lines) indicates a BCO unit cell; the BCO structure can also be considered as

a twinned B190 and each variant consists of one layer of monoclinic unit cell

(green lines) with b � 107�.
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initio calculations. However, the energy of the BCO phase

(�5.069 eV/atom) is slightly higher than that of the B190

phase (�5.073 eV/atom), whereas the more accurate ab ini-
tio calculations predicted that BCO has a lower energy at

zero temperature.25 On the other hand, the B190 phase is

most commonly observed in experiments at low tempera-

tures.5 It is still an open question as to the most stable mar-

tensitic phase at low temperatures. Nevertheless, the

geometric features of nanotwins reported in this work are

expected to be robust, as most of them are symmetry related.

But one should take caution in interpreting the relative mag-

nitude of energies among various phases and twins predicted

by the potential. Also note that as shown in Fig. 2(c), the

relaxed BCO phase (with an orthorhombic unit cell in white

lines) can be equivalently considered as B190 twinned at the

level of unit cells (green lines) with the resulting monoclinic

angle b � 107�. This geometrical view was advanced by

Huang et al.,25 providing an interesting connection between

nanotwinned and single phase structures. Table III lists the

elastic constants of the B2 phase calculated from the intera-

tomic potential at 0 K, which are close to ab initio calcula-

tions. Due to omission of the temperature effects or lattice

vibrations, these results are larger than experimental values

measured at and above room temperatures.51,52

B. Compound twins

Figures 3 and 4 show the relaxed structures of ð001Þ and

ð010Þ compound twins, respectively. Here (001) and (010)

refer to the ði0; j0; k0Þ basis in Fig. 1, and they are equivalent

to (001) and (110) in the ði; j; kÞ basis. We focus on a single

twin boundary by studying the thick twins, such that neigh-

boring twin boundaries are sufficiently separated to mini-

mize their interactions. The effect of the twin thickness will

be addressed later in Fig. 5. Notice that the initial structures

of ð001Þ and ð010Þ twins are constructed by using the trans-

formation matrices of Eqs. (A2) and (A1), respectively.

When applying these transformation matrices to construct

the atomic structures, one can choose to position the mathe-

matical mirror twin plane at various locations, including

exactly on an atomic layer or between atomic layers. As a

result, several metastable twin-boundary structures are

obtained after stress-controlled conjugate gradient energy

minimization. The corresponding mirror twin plane is indi-

cated by the dashed line in Figs. 3 and 4. The position of a

twin plane is determined according to its definition, i.e., the

arrangements of the lattice on one side of the twin boundary

plane are mirror reflections of those on the other.

For the relaxed ð001Þ compound twin shown in Fig. 3,

the mirror twin boundary is always located on the atomic

plane, irrespective of the position of the twin plane. As the

ð001Þ atomic planes consist of alternate pure Ni (small blue

atoms) or pure Ti (big red atoms) layers, the mirror twin

boundary can be either on a Ni laden plane (Fig. 3(a)) or Ti

laden plane (Fig. 3(b)). We define the twin boundary energy,

c, as the excess energy (in reference to the single phase of

B190) divided by the boundary area. The calculated value of

c is, respectively, 0.136 and 0.047 J/m2, indicating that the

twin boundary located on the Ti plane is more energetically

favorable than that on the Ni plane.

In contrast, for the relaxed ð010Þ compound twin shown

in Fig. 4, the energy minimization results in structures with

the twin mirror plane located either on or off the atomic layer.

To understand the “on” and “off” possibilities, one should

notice the following geometrical feature of (010) planes. In

contrast to the (001) planes that involve the alternate pure Ni

and pure Ti layers generating the twin structures shown in

Fig. 3, the order arrangement of atoms in a ð010Þ plane

involves a 2D rectangular net of Ni atoms interpenetrating a

rectangular net of Ti atoms. As such, all the (010) planes are

equivalent in terms of chemical arrangement of Ni and Ti

atoms. Consequently, if the mirror twin plane is located on

the atomic layer, there exists only one type of boundary struc-

ture, as discussed next with Fig. 4(b). Interestingly, adjacent

ð010Þ layers differ by an in-plane shift in the diagonal direc-

tion of the 2D rectangle cell of Ni (or Ti) by one-half of the

diagonal length. As a result, one period in the [010] direction

involves two neighboring ð010Þ atomic planes.

Figure 4(a) shows the relaxed structures when the mirror

twin plane is off the atomic layers. One can see that the mirror

TABLE III. Elastic constants (GPa) of the B2 phase calculated from the

Finnis-Sinclair (FS) potential of this work, in comparison with ab initio
calculations and experimental measurements at different temperatures.

FS potential

(T¼ 0 K)

Ab initio
(T¼ 0 K)

Experimental

(T¼ 298 K)a

Experimental

(T¼ 400 K)b

C11 206.3 183 162 137

C12 135.8 146 129 120

C44 46.9 46 34 34

aReference 52.
bReference 51.

FIG. 3. (Color online) Relaxed structures of ð001Þ compound twins. The

mirror twin plane (dashed line) is located on (a) the pure Ni laden layer and

(b) the pure Ti layer, respectively.

FIG. 4. (Color online) Relaxed structures of (010) compound twins. The

mirror twin plane (dashed line) is located (a) off the (010) atomic planes,

and (b) on the (010) atomic plane. The front atomic layer in (b1) and (b2)

exposes one of the two different (100) atomic planes of the same relaxed

structure. The white unit cell of Ti atoms in (b1) and that of Ni in (b2) strad-

dle the twin plane (dashed line), respectively, and remain the rectangular

shape.
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reflection is only approximately satisfied by unit cells of

atoms near the twin boundary. The corresponding twin bound-

ary energy c is 0.089 J/m2, larger than 0.014 J/m2 from the

first principles calculation.26 In contrast, Fig. 4(b) shows the

relaxed structure when the mirror twin plane is on the ð010Þ
atomic plane. Note that in Figs. 4(b1) and 4(b2) the front

atomic layer of the simulation box exposes one of the two

different (100) planes of the same relaxed structure, respec-

tively. It is seen that the mirror reflection is obeyed by the par-

allelogram-shaped unit cells (in green) on the two sides of the

twin plane. Moreover, the mirror twin plane is located in the

middle of the unit cells in white, and these cells keep the rec-

tangle shape so as to maintain the symmetry about the twin

plane. Such boundary is structurally different from that in

Fig. 4(a), resulting in a different twin boundary energy

c¼�0.0091 J/m2. Although the small negative boundary

energy could be specific to the interatomic potential, this

boundary structure can possibly exist as a metastable state,

justified by the local symmetry of the lattice. It follows that

this kind of boundary is expected to be observable in experi-

ments, considering that the shape memory alloys generally

consist of various co-existing metastable structures. As dis-

cussed next, the available HRTEM image26 shows evidence

of their existence.

The HRTEM image of nanocrystalline NiTi by Waitz et
al. has revealed the formation of nanoscale ð010Þ compound

twins that can span the entire grain.26 It was observed that the

thickness of twins varies in the same grain, and the thinnest

variant is about 1 nm, involving two layers of monoclinic unit

cells. These unit cells seem to be rectangular rather than

monoclinic, lending a support to the existence of the boundary

structures shown in Fig. 4(b). Systematic HRTEM experi-

ments and ab initio calculations are needed to clarify the exact

boundary structure.

To understand the effects of the twin thickness, we create

ð010Þ compound twins with thicknesses of two, three, and six

layers of monoclinic unit cells. Figure 5 shows the cases with

the twin mirror plane located between the atomic planes, simi-

lar to Fig. 4(a). The twin boundary energies extracted from

various twin structures in Fig. 5 are close to c � 0.09 J/m2.

These nearly constant values indicate the validity of separat-

ing the total energy into the bulk and excess interfacial parts

for the nanotwinned system. More specifically, for coarse

twins, it is common to analyze the optimal twin geometry in

terms of competing effects of the increase of the total twin

boundary energy with decreasing twin thickness and the asso-

ciated decrease of the bulk elastic energy caused by the geo-

metric incompatibility of transformed phases with the

surrounding materials.42 The foregoing results show that such

an approach can be extended to analyze the nanotwinned

structures at low temperatures, considering the nearly constant

twin boundary energies at the nanometer scale.

C. Geometrical limit of nanotwins

We have explored the geometrical limit of nanoscale

twins with monolayers of the monoclinic unit cell, whereas

the hitherto experiment only reveals nanotwins as thin as

two layers of monoclinic unit cells in each B190 variant, as

discussed previously. Figure 6 shows the relaxed structures

of ð010Þ compound twins with one layer of monoclinic unit

cells in each variant. Their boundary structures are similar to

those shown in Fig. 4, but the twin thickness is reduced

to the minimum. To understand these structures, it is useful

to note that the lattice of the B2 phase of NiTi can be viewed

as four sets of interpenetrating tetragonal sublattices, as sche-

matically shown in Fig. 6(a). The martensitic transformation

from the B2 to B190 phase can be considered as an expansion

or contraction along the edges of the tetragonal unit cell,

followed by a simple shear to a monoclinic angle b.

Figure 6(b) shows the relaxed twin structure when the

mirror twin plane is located off the atomic plane, and its

twin boundary structure is similar to that in Fig. 4(a). This is

a simple case of uniform martensitic transformation, where

each of the four sublattices consists of alternate single layer

of monoclinic unit cells with b � 94�.
Of particular interest is that a new nanotwinned struc-

ture is found: one Ni sublattice and one Ti sublattice

undergo martensitic transformations, whereas other Ni and

Ti sublattices remain orthorhombic. This mode is discov-

ered from the relaxed structure when the martensitic trans-

formations are imposed according to the matrices in

Eq. (A1) with the mirror twin plane positioned at the (010)

atomic plane; the relaxed boundary structure is similar to

that in Fig. 4(b). Figures 6(c1) and 6(c2) show the same

state of such a twinned structure after energy minimization.

Notice that because of interpenetration of 3D sublattices,

one period in the [100] direction involves two neighboring

(100) atomic planes. The front atomic layer of the simula-

tion cell in Figs. 6(c1) and 6(c2) exposes one of the two dif-

ferent (100) planes, respectively. Comparing them with Fig.

6(a), one can see that one sublattice of Ni atoms [green

twinned cells in (c1)] and one sublattice of Ti atoms [blue

twinned cells in (c2)] consist of variants of single layer of

monoclinic unit cells (b ¼ 98:43�), whereas one sublattice

of Ti atoms [orange rectangle cells in (c1)] and one sublat-

tice of Ni atoms [pink rectangle cells in (c2)] consist of

orthorhombic unit cells (b ¼ 90�). One interesting feature is

the tight coupling of sheared and unsheared sublattices,

resulting from interpenetration of the multilattices.

Although this nanotwinned structure was discovered from

FIG. 5. (Color online) Atomistically simulated twin structures with different

twin widths, i.e., each green-colored twin variants comprises (a) two, (b)

three, or (c) six layers of monoclinic unit cells. Black lines are drawn for

guiding eyes, equivalent to the white lines in the TEM image by Waitz et al.
(Fig. 2 in Ref. 26).
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our atomistic simulations of equiatomic NiTi at zero tem-

perature, it is geometrically reasonable and could present as

metastable states in other alloy and compound systems with

the multilattice structure.53,54

The alternate twinned structures shown in Fig. 6 can be

considered as a single orthorhombic phase with the period

doubled in the twin-plane normal direction of [010]. This ge-

ometrical view is motivated by a similar consideration of the

single phase BCO as a twinned B190 with the monoclinic

angle b � 107�,25 as discussed earlier. Of course, there is a

notable difference between the two cases: all the sublattices

of BCO are equivalent, whereas the new structure involves

the interpenetration of alternatively sheared and unsheared

sublattices. Moreover, whereas these twin products were

obtained by a general procedure of constructing martensites

according to Eq. (A1) followed by energy minimization, one

may equivalently set up their initial states by shuffling every

other (010) atomic plane in the [001] direction—the shuf-

fling method has also been used to study the pathways of

martensitic transformation.28,55

In the present geometrical limit of monolayer twinned

structures, despite the spatial overlap of the bulk and twin

boundary regions, the effective twin boundary energy (i.e.,

the excess energy per unit boundary area in reference to the

B190 monovariant) is still about �0.0089 J/m2, very close the

values of �0.0091 J/m2 extracted from the previous cases of

thicker nanotwins. As explained earlier, one should take cau-

tion in interpreting the energy values given by the interatomic

potential. However, the geometric features of those nano-

twins are symmetry related. They could possibly exist as met-

astable states, considering that the HRTEM image by Waitz

et al.26 has revealed a similar type of thicker nanotwins.

Finally, to facilitate the future verification by ab initio calcu-

lations and experimental measurements, we list in Table II

the predicted unit-cell geometry and energy per atom for the

monolayer nanotwins shown in Figs. 6(b) and 6(c).

D. Phase transformation and size effect

Temperature-driven phase transformation is simulated by

using the MD simulation package LAMMPS. We have imple-

mented the NiTi potential in LAMMPS. In MD simulations, the

starting structure is monoclinic B190. The supercell box con-

tains 9216 atoms. The system is subjected to periodic bound-

ary conditions and fully relaxed to zero stresses. The

temperature is initially set to 100 K through thermal equilibra-

tion. Then the thermal load is applied by linearly varying tem-

peratures in three stages: (I) heating from 100 to 450 K; (II)

cooling from 450 to 100 K; (III) reheating until 450 K. The

MD simulation of each stage involves 200 000 time steps,

each of which is 0.5 fs. The phase transformation is character-

ized by geometrical changes of the simulation cell in terms of

an order parameter, W, defined as the sum of all the shear

components of the simulation box. W is further normalized by

its maximum value, such that it varies between 0 and 1, corre-

sponding to the cubic B2 and monoclinic B190 phases,

respectively.

Figure 7 shows that in stage I of heating (blue curve), W
first increases slightly with temperature due to the effect of

thermal expansion. As the temperature is further increased to

�350 K, W decreases sharply to a very small value close to

zero. Correspondingly, the B190 phase, Fig. 7(b), undergoes

a structural phase transition to the B2 phase, Fig. 7(c). This

indicates that both the start temperature, As, and finish tem-

perature, Af, of the B2 austenite are close to 350 K.

In stage II of cooling (black curve), a similar abrupt

change of W is observed as temperature is decreased to

�300 K. This corresponds to the reverse transformation

from the B2 austenite to the B190 martensite. Due to forma-

tion of the twinned B190 structures, Fig. 7(d), W only

increases to 0.6, smaller than W¼ 1 of a single B190 phase.

This reduction of W can be attributed to the canceling effect

of shearing of adjacent twin variants in the opposite direc-

tions, causing a decrease of the overall shear of the simula-

tion box. The corresponding start temperature of the B190

martensite, Ms, is 310 K and the finish temperature, Mf, is

290 K, indicating that the formation of twinned structures

occurs in a relatively narrow temperature range.

In stage III of reheating (red curve), the twinned B190

structure undergoes the transforms to a single B2 phase. The

process starts at �310 K and finishes at 350 K. Correspond-

ingly, W deceases gradually from 0.6 to 0, in contrast to the

abrupt change of W at �350 K in stage I of heating of a sin-

gle B190 phase. Both the decrease of As and gradual change

of W can be attributed to the presence of twin boundaries

FIG. 6. (Color online) Relaxed atomic structures of ð010Þ twins with the

smallest thickness (about 0.5 nm), and each variant consists of one layer of

monoclinic unit cells, i.e., two atomic planes. (a) Schematics of four sets of

interpenetrating simple orthorhombic sublattices. One Ni sublattice is repre-

sented by a 3D green box, and the other Ni sublattice is indicated by a 2D

pink rectangle instead of a 3D box for clarity. The two Ti sublattices are

indicated by the orange and blue rectangles, respectively. (b) All sublattices

are twinned, as indicated by the sheared unit cells. (c) A subset of interpene-

trating sublattices is twinned. The front atomic layer of (c1) and (c2) exposes

one of the two different (100) atomic planes, respectively. The Ni sublattice

in (c1) and Ti sublattice in (c2) are twinned.
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acting as the heterogeneous interfaces to facilitate the pro-

gressive detwinning through boundary migration.

We further study the size effects of the simulation box

on phase transformations. The length of all three sides of the

simulation cell is either reduced by one-half or doubled, cor-

responding to 1/8 and 8 times the previous volume, respec-

tively. As shown in Figs. 7(e) and 7(f), the size effect is

small on phase transition temperatures, indicating that the

present MD predictions can well represent those of bulk

NiTi. Indeed, the MD-predicted temperatures are only

slightly lower (by 20 K) compared to experimental values.56

On the other hand, a size effect is observed on the magnitude

of W. Namely, at the end of stage II of cooling, W decreases

with the increasing size of the simulation box, implying that

W will reach its lower limit of zero in bulk NiTi. This trend

is expected because the twin variants in a large system can

better self-accommodate their respective shear distortion,

thereby reducing the overall (averaged) shear deformation.

But the quantification of the size limit giving W � 0 is not

feasible yet, due to the computational limitation on the time

scale of MD simulations of large atomic systems. On the

other hand, W increases as the size of the simulation box

decreases. This is understandable by noting the following

limit. For the smallest simulation box with one unit cell, the

formation of twinned microstructures is completely sup-

pressed because of the geometrical constraint of the simula-

tion cell, so that W has to stay at its upper limit of 1.

IV. SUMMARY AND CONCLUSION

Combining the crystallographic theory of twinned mar-

tensite with atomistic simulations, we study the nanoscale

twins and martensitic phase transformations in NiTi with the

multilattice structure. We explore the geometrical limits of

nanotwins by showing the possible formation of a nontrivial

mode of twinned martensites: different sublattices undergo

different martensitic transformations. These twin structures

are metastable and likely to be attainable in nanoscale com-

pound twins, as hinted by the HRTEM images by Waitz et
al.26 Our molecular dynamics simulations predict the phase

transformation temperatures, consistent with experimental

measurements.56 We find both the formation of twinned

microstructures and associated overall shear deformation are

sensitive to the size of the simulation system.

The present atomistic study focuses on the structural

aspects of nanoscale compound twins. In view of the impre-

cision of empirical interatomic potential, verification via

experiments and first principles calculations is needed to as-

certain the conclusions. However, our results reveal the com-

plexity of martensitic phase transformations at the sublattice

level, and provide a structural basis for further atomistic

study, as well as multiscale modeling of the NiTi phase

transformations through bridging the crystallographic theory

with atomistic and quantum mechanical calculations. Fur-

ther, to fully reveal the physical origin of formation of nano-

twins, the determination of the multilayer generalized

gamma surface29,57 is needed. This type of calculation has

been performed for elemental metals,57 but not NiTi with the

multilattice structure. Finally, we note that the elemental

metals (e.g., Cu) with nanotwins exhibited unusual proper-

ties, e.g., ultrahigh strength with retained ductility and high

electrical conductivity,58,59 the strongest twin size around 15

nm,60,61 etc. Nanotwins in alloy and compound systems are

more complicated, and possibly work in a very different way

than normal metals. This work is a necessary step toward

FIG. 7. (Color online) MD simulation

of phase transformation for different

sizes of the simulation box. (a) The

order parameter W as a function of tem-

perature T for three stages of tempera-

ture loading: (I) heating (blue), (II)

cooling (black), and (III) reheating

(red). Symbols represent time-averaged

values and lines are drawn to guide

eyes. (b) The monoclinic B190 phase at

the beginning of stage I of heating. (c)

The cubic B2 phase at the end of stage I

of heating. (d) The B190 phase at the

end of stage II of cooling, forming

nanotwins indicated by dashed lines. (e)

Same as (a) except that the volume is 1/

8 of that in (a). (f) Same as (a) except

that the volume is 8 times of that in (a).
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understanding and exploiting the nanotwinned structure-

property relationship in alloys and compounds with the com-

plex multilattice structures.
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APPENDIX: SOLUTIONS OF TWINNING EQ. (5) FOR
COMPOUND TWINS

We have used the crystallographic theory of twinned

martensite45 to facilitate the construction of initial twin

structures. This theory only requires an input of the transfor-

mation matrix from the cubic parent phase to monoclinic

martensitic phase. The twinning elements, including the twin

plane normal n and twin shear vector m, can be predicted by

solving the twinning equation of Eq. (5) in the text. This

appendix provides the solution of twinning elements for

compound twins. Their relaxed structures are discussed in

the Sec. III. It should be noted that the general solutions pro-

vided by Hane and Shield45 sometimes cannot be directly

used in the atomistic simulation when periodic boundary

conditions48 are imposed to eliminate the free surface for

studying bulk properties. In other words, it is necessary to

construct the deformation gradient matrix such that the twin

plane after martensitic transformation remains parallel to one

side of the supercell for ensuring periodic twin structures in

different supercells.

Consider a pair of symmetry-related transformation

matrices

FI ¼
1

a0

b=
ffiffiffi
2
p

0 0

0 c sin b=
ffiffiffi
2
p

0

0 �c cos b=
ffiffiffi
2
p

a

2
64

3
75;

FJ ¼
1

a0

b=
ffiffiffi
2
p

0 0

0 c sin b=
ffiffiffi
2
p

0

0 c cos b=
ffiffiffi
2
p

a

2
64

3
75;

(A1)

We solve the twinning equation of Eq. (5) by following the

procedure described by James and Hane (Ref. 3, Proposition

1, p. 202). Using the experimental values of lattice constant

and monoclinic angle listed in Table I. we obtain two solu-

tions: nI ¼ 0; 1; 0½ �, mI ¼ 0; 0; 0:2566½ � and nII ¼ 0; 0; 1½ �,
mII ¼ 0; 0:2252; � 0:0268½ �, which give the ð010Þ and ð001Þ
compound twin, respectively. This pair of twins is conven-

tionally called reciprocal or conjugate twins. Note that all

the vectors are given in the ði0; j0; k0Þ basis defined in Fig. 1.

Substitution of nI and mI into Eq. (5) yields Q ¼ I. As

discussed earlier, this result indicates that after the martensitic

transformation of variants I and J, the orientation of the twin

plane ð010Þ is unchanged as illustrated in Fig. 8(a). This can

be readily verified by noting that the twin plane normal after

transformation, nIF�1, is still along the 0; 1; 0½ � direction.

In contrast, substitution of nII and mII into Eq. (5) yields

Q unequal to the identity matrix. This is consistent with the

fact that the orientation of the twin plane (001) is changed

after martensitic transformation, as shown in Fig. 8(b).

Indeed, the twin plane normal after transformation, nIF�1, is

in the 0; 0; 1½ � direction. To ensure the periodicity of ð001Þ
compound twins in different supercells, we construct a pair

of transformation matrices that are equivalent to those given

by Eq. (A1), but keep the twin plane unrotated after marten-

sitic transformation [see Fig. 8(c)],

F	I ¼
1

a0

b=
ffiffiffi
2
p

0 0

0 c=
ffiffiffi
2
p

�a cos b

0 0 a sin b

2
64

3
75;

F	J ¼
1

a0

b=
ffiffiffi
2
p

0 0

0 c=
ffiffiffi
2
p

a cos b

0 0 a sin b

2
64

3
75:

(A2)

The above-presented matrices are constructed by noting that

the martensitic transformation of the B2 to B190 phase can

be considered as an expansion or contraction along the edges

of a tetragonal unit cell (see Fig. 1), followed by a simple

shear to a monoclinic angle b. This simple shear can be

achieved by rotating the j0 axis about the i0 axis, giving Eq.

(A1) or equivalently by rotating k0 about i0, giving Eq. (A2).

Solution of Eq. (1) with an input of Eq. (A2) gives com-

pound twins of nI ¼ 0; 1; 0½ �, mI ¼ 0; � 0:0304; 0:2550½ �
and nII ¼ 0; 0; 1½ �, mII ¼ 0; 0:227; 0½ �. They are equivalent to

the results from Eq. (A1), differing by a rotation.

Incidentally, Eq. (A2) can also be obtained by a more

general procedure of starting from Eq. (A1) and then con-

structing a matrix that rotates the twin plane so that it is par-

allel to the side of the supercell, i.e., F	J ¼ Q	FJ and

F	I ¼ Q	TFJ , where

Q	 ¼
1 0 0

0 sin b cos b
0 � cos b sin b

2
4

3
5: (A3)

This “transformation and rotation” procedure is general, and

can be applied to construct other types of twins in periodic

supercells.
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