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a b s t r a c t 

In situ synchrotron X-ray and neutron diffraction experiments provide a powerful ap- 

proach to measure lattice strains in bulk polycrystalline materials. They are being increas- 

ingly used for quantitative characterization of microscale deformation within and between 

grains and phases. Here we use a self-consistent micromechanics model to obtain a gen- 

eral analytic solution of the grain-level lattice strains and diffraction elastic constants for 

a broad class of elastically isotropic polycrystals with cubic crystal symmetry. This analytic 

solution reveals a direct linear relationship between the reciprocal of the elastic diffrac- 

tion constant and the orientation index parameter along the direction of any diffraction 

vector, including tensile loading and transverse directions. The straightforward numerical 

implementation of this solution provides diffraction elastic constants for 26 representative 

cubic polycrystals. Analytic solutions of this kind can serve to benchmark in situ diffraction 

measurements of lattice strains and also facilitate high-throughput studies of microscale 

stresses and diffraction elastic constants in polycrystalline materials. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In situ synchrotron X-ray diffraction (SXRD) and neutron diffraction experiments are widely used in a broad range of dis-

ciplines, including materials science, geophysics, environmental science, biophysics and others ( Allen et al., 1985 ; Ice et al.,

2011 ). They can provide direct measurements of lattice strains in bulk polycrystalline materials ( Clausen et al., 1998 ;

Dye et al., 2001 ; Hommer et al., 2019 ; Li et al., 2018 ). In the elastic regime, the lattice strains of individual grain families

with specific orientation increase linearly with the macroscopically applied stress, as demonstrated, for example, by neutron

diffraction of copper ( Clausen et al., 1998 ), steel ( Clausen et al., 1999 ; Daymond et al., 1997 , 20 0 0 ; Pang et al., 1998 , 20 0 0 ),

nickel-based alloys ( Holden et al., 1997 , 1998 ), and SXRD of austenitic stainless steel ( Chen et al., 2019 ; Wang et al., 2018b ).

These linear relationships are usually characterized by the so-called diffraction elastic constants ( Behnken and Hauk, 1986 ;

Bollenrath et al., 1967 ; DeWit, 1997 ; Gnaupel-Herold et al., 1998 ), which vary with the orientation of the grain family. The

lattice strains and diffraction elastic constants have many possible uses in analysis of microscale residual stresses ( Hu et al.,

2016 ; Li et al., 2018 ) and progressive yielding ( Chen et al., 2019 ; Wang et al., 2018b ). They also provide a means of re-

versely determining the single crystal elastic constants of new materials ( Wu et al., 2014 ) or materials with lower symme-

tries ( Stebner et al., 2013 ). However, it is hard to find solutions for lattice strains and diffraction elastic constants of many
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Fig. 1. Schematic diagrams of in situ SXRD measurements of lattice strains in a polycrystalline material. (a) Schematic of SXRD setup ( Chen et al., 2019 ), 

showing an incident X-ray beam into a polycrystalline specimen diffracted to generate a series of Debye-Scherrer rings. The loading direction (denoted 

as LD), transverse direction (TD), and normal direction (ND) of the specimen are marked. In the detector plane, the unit normal vector n is along LD, m 

along TD, and a general diffraction vector Q deviates n by an angle ϕ. Note that the red diffraction spot at the top-center of the detector plane is actually 

produced by diffraction of lattice planes with poles slightly misaligned from the LD by a very small angle (less than 1 ° in typical SXRD measurements); 

a similar approximation is applied to other diffraction spots in the detector plane as well. (b) Two-dimensional cross section of an RVE in the tensile 

specimen in (a), subjected to a uniaxial tensile stress σ 0 . Each grain is associated with a set of local orthonormal crystal basis vectors { e c 1 , e 
c 
2 , e 

c 
3 }, and the 

out-of-plane basis vector is not shown. Representative grains in respective {200}, {220} and {111} families oriented along LD are marked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

materials in the literature. The demand for these solutions is expected to grow in the coming years, as in situ diffraction

experiments can be used for high-throughput and data-analytics studies of the mechanical behavior of polycrystalline ma-

terials with complex compositions and microstructures, such as high-entropy alloys ( Wang et al., 2018a ; Wu et al., 2014 ),

additively manufactured alloys ( Brown et al., 2017 ; Chen et al., 2019 ; Wang et al., 2018b ), heterogeneous nanostructured

metals and alloys ( Ma and Zhu, 2017 ; Wang et al., 2010 ), and others. 

In this paper, we make a combined use of the classical Eshelby inclusion solution ( Eshelby, 1957 ) and the self-consistent

method of microstructure homogenization ( Qu and Cherkaoui, 2006 ) to obtain a general analytic solution of grain-level lat-

tice strains and diffraction elastic constants. This solution is applicable to a broad class of elastically isotropic polycrystals

with cubic crystal symmetry, including face-centered cubic (FCC), body-centered cubic (BCC) and diamond cubic (DC) crys-

tals. Bollenrath et al. (1967) obtained an analytic solution of diffraction elastic constants of cubic polycrystals using Kröner’s

self-consistent method ( Kröner, 1960 ). De Wit gave alternative solutions of diffraction elastic constants ( DeWit, 1997 ). But

they did not provide the general analytic solution of lattice strains, and their derivations of the diffraction elastic constant

solutions were not completely presented. The diffraction elastic constants can also be calculated using different numeri-

cal methods. One is based on the self-consistent polycrystal model that requires a numerical average of lattice strains in

grains within the same family ( Clausen et al., 1998 ). Another is based on the finite element polycrystal model that relies

on a full numerical calculation of lattice strains in a polycrystalline aggregate ( Li and O’Dowd, 2011 ). Nonetheless, the an-

alytic solutions are highly desired for clear understanding and robust parametric studies of the lattice strain effects. Here

we adopt a modern micromechanics approach ( Qu and Cherkaoui, 2006 ) to obtain a general analytic solution of lattice

strains and diffraction elastic constants for cubic polycrystals. This solution can be readily understood and applied. It only

requires an input of the three independent elastic constants of a cubic crystal. The associated numerical results are validated

by literature data as well as polycrystal elasticity finite element simulations. Since the present solution requires only sim-

ple algebraic calculations, one can pursue straightforward numerical calculations to determine lattice strains and diffraction

elastic constants for any cubic polycrystals using a MATLAB code. 1 

2. Lattice strains and diffraction elastic constants 

Fig. 1 a shows the schematic diagram of in situ SXRD measurement of lattice strains in a polycrystalline specimen un-

der uniaxial tension. An incident X-ray beam into the specimen is diffracted to generate a series of Debye-Scherrer rings

( Margulies et al., 2001 ). Each diffraction spot (e.g., red dot) on a ring corresponds to a family of grains with a common
1 A MATLAB code is published online with this paper. The code is used to calculate the diffraction elastic constants of cubic polycrystals, based on the 

analytic solutions presented in this work. 
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crystallographic plane, such as a {111} plane, oriented along a specific spatial direction, e.g., the loading direction (denoted

as LD and represented by the unit normal vector n ), the transverse direction (denoted as TD and represented by the unit

normal vector m ), or the direction along any diffraction vector Q . By tracking the change of lattice spacings during tensile

loading, one can obtain the average lattice strains in different grain families as a function of applied load, and then calculate

the stresses in these grain families using single crystal elastic constants. Fig. 1 b shows a two-dimensional cross section of

a representative volume element (RVE) in the tensile specimen. In a typical grain (highlighted in red) in this RVE, the unit

normal vector n of a set of lattice planes is oriented along LD, and the unit normal vector m of another set of lattice planes

is oriented along TD. Each grain is associated with an orthonormal basis { e c 
1 
, e c 

2 
, e c 

3 
} of the cubic lattice. Also plotted are

the representative grains in different { hkl } grain families oriented along LD. Different grain families usually exhibit different

lattice strains and diffraction elastic constants, due to the elastic anisotropy of grain crystals. 

Consider a { hkl } grain family consisting of N grains in an RVE of a polycrystal ( Fig. 1 b). These grains are numbered by 1,

… α, … N . To determine the average lattice strains and diffraction elastic constants in this grain family, one needs to obtain

a linear tensorial relation between the macroscopic stress σ i j and the strain ε (α) 
i j 

in the grain α, i.e., 

ε (α) 
i j 

= U 

(α) 
i jkl 

σ kl (1)

where U 

(α) 
i jkl 

is the constrained compliance tensor of the grain α embedded in the polycrystal. It should be noted that under

a macroscopically applied load, the strain response of the grain α in a polycrystal is not merely determined by single crystal

elastic constants, since elastically anisotropic grains interact with each other to adjust local strains for accommodating their

deformation incompatibility. Hence, U 

(α) 
i jkl 

is different from the single crystal compliance tensor M 

(α) 
i jkl 

and will be derived

in Section 3 . Also note that throughout this paper, all the index components of vectors and tensors are resolved in the

local orthonormal basis of the grain crystal, e.g., { e c , (α) 
1 

, e c , (α) 
2 

, e c , (α) 
3 

} in the representative grain α; the Einstein summation

convention is used for repeated indices, except for repeated α, β and γ . 

Under an applied uniaxial tensile stress σ 0 ( Fig. 1 b), the macroscopic stress σ i j acting on the polycrystalline RVE can be

expressed as 

σ i j = σ0 n 

(α) 
i 

n 

(α) 
j 

(2)

where n (α) 
i 

denotes the components of the unit vector along LD resolved in terms of the local cubic basis of the grain α.

The lattice strain ε (α) 
LD 

along LD can be similarly resolved in terms of the local cubic basis as 

ε ( α) 
LD 

= ε ( α) 
ij 

n 

( α) 
i 

n 

( α) 
j 

(3)

Substitution of Eqs. (1) and (2) into Eq. (3) yields 

ε ( α) 
LD 

= σ0 U 

( α) 
ijkl 

n 

( α) 
i 

n 

( α) 
j 

n 

( α) 
k 

n 

( α) 
l 

(4)

The average lattice strain ε LD in the { hkl } grain family along LD is, therefore, given by 

ε LD = 

1 

N 

N ∑ 

α=1 

ε ( α) 
LD 

(5)

The diffraction elastic constant along LD is defined as 

1 

E hkl 
LD 

= 

ε LD 

σ0 

(6)

Combining Eqs. (4 - 6 ), one can express E hkl 
LD 

as 

1 

E hkl 
LD 

= 

1 

N 

N ∑ 

α=1 

U 

( α) 
ijkl 

n 

( α) 
i 

n 

( α) 
j 

n 

( α) 
k 

n 

( α) 
l 

(7)

once U 

(α) 
i jkl 

is specified. 

3. General solution for the constrained compliance tensor U 

As shown in Section 2 , the constrained compliance tensor U 

(α) 
i jkl 

is key to determining the lattice strains and diffraction

elastic constants for a cubic polycrystal. In this Section, a general solution of this compliance tensor is obtained using the

direct notation. We consider a polycrystalline RVE with a given distribution of grain orientations. The anisotropic elasticity

tensor of the grain α is denoted as L ( α) . As discussed earlier, the lattice strain response of this grain is not merely deter-

mined by L ( α) , since elastically anisotropic grains interact with each other to adjust local strains. To account for such grain

interactions, we consider a representative grain in an RVE as a spherical inclusion embedded in an homogeneous matrix. As

shown by Eshelby (1957) , the stress and strain fields are uniform in the spherical inclusion and can be determined using the
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Eshelby inclusion solution. With this solution, the constrained compliance tensor U 

( α) can be readily derived. More specifi-

cally, the macroscopic stress σ and strain ε applied to the RVE are taken to be the volume averages of stress and strain in

all the grains, respectively. They are related by 

σ = L ε , ε = M σ (8) 

where L and M are respectively the effective elastic stiffness and compliance tensor of the homogeneous RVE, such that

M = L 
−1 

. When the RVE is subjected to the macroscopic strain, ε , the Eshelby inclusion solution ( Qu and Cherkaoui, 2006 )

shows that the uniform strain ɛ ( α) in the spherical grain inclusion is given by 

ε 

( α) = T 

( α) ε (9) 

where the global strain concentration tensor T ( α) ( Qu and Cherkaoui, 2006 ) is given by 

T 

(α) = 

[ 
I + S (α) L 

−1 (
L (α) − L 

)] −1 

(10) 

In Eq. (10) , I is the fourth rank identify tensor and S ( α) is the Eshelby inclusion tensor of a spherical grain inclusion

embedded in a matrix with the elastic stiffness tensor of L . From Eqs. (8) and (9) , the strain ɛ ( α) in the grain α can be

expressed in terms of the macroscopic stress σ as 

ε 

( α) = U 

( α) σ (11) 

where the grain compliance tensor U 

( α) is given by 

U 

(α) = T 

(α) M (12) 

To derive the solution of diffraction elastic constants from U 

( α) , one needs to provide the solution of L from the given

single crystal elastic constants. In this work, we use the self-consistent method ( Qu and Cherkaoui, 2006 ) to determine L ,

as shown in Section 4 . 

4. Constrained compliance tensor U in a cubic polycrystal 

From the grain compliance tensor U 

( α) given in Section 3 , we obtain a general solution of the diffraction elastic constants

for an elastically isotropic polycrystal with cubic crystal symmetry. Using the index notation, the components of L ( α) can be

expressed in terms of the local crystal basis as ( Qu and Cherkaoui, 2006 ) 

L (α) 
i jkl 

= C 12 δi j δkl + C 44 

(
δik δ jl + δil δ jk 

)
+ ( C 11 − C 12 − 2 C 44 ) d i jkl (13) 

where C 11 , C 12 and C 44 are the single crystal elastic constants of cubic crystals, δij is the Kronecker delta and the non-zero

components of d ijkl are d 1111 = d 2222 = d 3333 = 1 . As shown by Qu and Cherkaoui (2006) , it is helpful to introduce a symbolic

representation for the fourth-order tensors involved, so as to facilitate a convenient algebraic operation for these tensors,

including addition, subtraction, multiplication, and inverse. Specifically, the components of L ( α) can be equivalently written

as 

L (α) 
i jkl 

= ( 3 η1 − 2 η2 ) 
1 

3 

δi j δkl + 2 η3 
1 

2 

(
δik δ jl + δil δ jk 

)
+ ( 2 η2 − 2 η3 ) d i jkl (14) 

where 3 η1 = C 11 + 2 C 12 , 2 η2 = C 11 − C 12 and 2 η3 = 2 C 44 . Then the fourth-order tensor L ( α) in Eq. (14) can be written symbol-

ically as ( Hutchinson, 1970 ) 

L (α) = ( 3 η1 , 2 η2 , 2 η3 ) (15) 

We consider a polycrystal having a random distribution of grain orientations and thus an isotropic elasticity tensor L .

With the same symbolic notation, L and its corresponding compliance tensor M are respectively written as 

L = 

(
3 K , 2 μ, 2 μ

)
and M = 

(
1 

3 K 

, 
1 

2 μ
, 

1 

2 μ

)
(16) 

where K is the effective bulk modulus and μ is the effective shear modulus of an elastically isotropic polycrystal. The

equations for K and μ from the self-consistent method ( Hutchinson, 1970 ) are given by 

K = 

1 

3 

( C 11 + 2 C 12 ) (17) 

8 μ3 + ( 5 C 11 + 4 C 12 ) μ
2 − C 44 ( 7 C 11 − 4 C 12 ) μ − C 44 ( C 11 − C 12 ) ( C 11 + 2 C 12 ) = 0 (18) 

Given the single crystal elastic constants, one can calculate K from Eq. (17) and μ by solving Eq. (18) . On the other

hand, the Eshelby inclusion tensor for a spherical inclusion in an elastically isotropic matrix can be written symbolically as

( Qu and Cherkaoui, 2006 ) 

S ( α) = 

(
3 γ , 2 δ, 2 δ

)
(19) 
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where 

γ = 

K 

3 K + 4 μ
and δ = 

3 K + 6 μ

15 K + 20 μ
(20)

In addition, the fourth-order identity tensor is I = ( 1 , 1 , 1 ) . Our symbolic calculations of T ( α) based on Eq. (10) and U 

( α)

based on Eq. (12) yield 

U 

( α) = 

( 

1 

3 

[
K + γ

(
3 η1 − 3 K 

)] , 
1 

2 

[
μ + δ( 2 η2 − 2 μ) 

] , 
1 

2 

[
μ + δ( 2 η3 − 2 μ) 

]
) 

(21)

To proceed further, we represent U 

( α) symbolically as 

U 

( α) = ( 3 a, 2 b, 2 c ) (22)

where 3 a , 2 b and 2 c correspond to the respective component of U 

( α) in Eq. (21) . By comparing Eqs. (14) and (15) , we rewrite

U 

( α) in Eq. (22) as 

U 

(α) 
i jkl 

= ( 3 a − 2 b ) 
1 

3 

δi j δkl + 2 c 
1 

2 

(
δik δ jl + δil δ jk 

)
+ ( 2 b − 2 c ) d i jkl (23)

The solution of U 

(α) 
i jkl 

in Eq. (23) is used to determine lattice strains and diffraction elastic constants in Sections 5 - 7 ; it

can be also used to calculate grain-level stresses for the study of progressive yielding in different grain families ( Chen et al.,

2019 ). It should be emphasized that the solution of U 

(α) 
i jkl 

applies to a random orientation of grains. Consideration of crystal-

lographic textured polycrystals is beyond the scope of this work. 

5. Diffraction elastic constants along LD 

Consider a { hkl } grain family along LD in an RVE ( Fig. 1 b). The grains in this family are numbered as 1, … α, … N . In the

local crystal basis of grain α, the component of the unit vector n along the [ hkl ] direction can be expressed as 

n = ( n 1 , n 2 , n 3 ) = ( h, k, l ) / 
√ 

h 

2 + k 2 + l 2 (24)

From Eqs. (7) and (23) , the diffraction elastic constant for the { hkl } grain family along LD is derived as 

1 

E hkl 
LD 

= 

1 

N 

N ∑ 

α=1 

[ 

3 a − 2 b 

3 

n i n i n k n k + 2 cn i n i n j n j + 2 ( b − c ) 

3 ∑ 

i 

( n i ) 
4 

] 

(25)

With n 
i 
n 

i 
= 1 , substitution of Eq. (24) into Eq. (25) yields 

1 

E hkl 
LD 

= 

3 a + 4 b 

3 

− 4 ( b − c ) 
 (26)

where the orientation index parameter 
 is defined as 


 = 

h 

2 k 2 + l 2 k 2 + h 

2 l 2 (
h 

2 + k 2 + l 2 
)2 

(27)

This orientation parameter varies between 0 and 1/3 to cover all the grain families with random orientations, and

they are 0, 19/121, 1/4 and 1/3 for the representative grain families of {200}, {311}, {220} and {111}, respectively.

Eq. (26) reveals a linear dependence of 1 /E hkl 
LD 

on 
, which has been previously shown by Bollenrath et al. (1967) .

In addition, Eq. (26) shows that the linear dependence of 1 /E hkl 
LD 

on 
 is dictated by b − c. Since 4( b − c ) = δ( η3 −
η2 ) / { [ μ + δ(2 η2 − 2 μ) ][ μ + δ(2 η3 − 2 μ) ] } , the sign of b − c is determined predominantly by η3 − η2 and thus by the

anisotropy ratio A = 2 C 44 / ( C 11 − C 12 ) = η3 / η2 . Hence, Eq. (26) indicates that if A > 1, then b − c > 0 and thus E hkl 
LD 

increases

with 
, and vice versa. For example, E 111 
LD > E 200 

LD 
for FCC Cu, because of A = 3.21, while E 111 

LD < E 200 
LD 

for BCC Nb, due to

A = 0.49. This analysis relates the anisotropy ratio A to the relative magnitude of E 111 
LD 

and E 200 
LD 

, a factor that strongly influ-

ences the progressive yielding responses during loading as well as the residual stress responses after unloading in different

grain families ( Dye et al., 2001 ). 

Using the analytic solution of Eq. (26) , we calculated the diffraction elastic constants for various cubic polycrystals, with

the experimental values of single crystal elastic constants from Simmons and Wang (1971) , which are also provided in the

Appendix. Table 1 lists the numerical results of the diffraction elastic constants along LD for 26 representative elastically

isotropic polycrystals with FCC, BCC and DC crystal symmetries (as indicated in the Appendix). 

To validate the present analytic solution and associated calculations of diffraction elastic constants, we compared our

numerical results of FCC Cu and stainless steel (SS) 316L with literature data. Table 2 shows that our results of diffraction

elastic constants along LD closely match those by Clausen et al. (1998) , who used Kröner’s self-consistent solution and the

same sets of single crystal elastic constants as ours. In addition, Table 2 shows that our results of diffraction elastic constants

along LD for SS 316L reasonably agree with SXRD measurements ( Chen et al., 2019 ). 
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Table 1 

Diffraction elastic constants E hkl 
LD 

along LD (in GPa). 

E 200 
LD E 220 

LD E 111 
LD E 311 

LD 

Ag 65.30 88.43 100.27 78.14 

Al 67.09 71.29 72.80 69.67 

Au 63.55 84.69 95.25 75.36 

Cu 101.15 139.06 158.91 122.05 

Ir 491.12 554.66 579.65 529.19 

Ni 183.74 237.86 263.76 214.38 

Pb 18.59 26.97 31.74 23.10 

Pd 107.11 142.53 160.18 126.92 

Pt 159.41 182.98 192.47 173.45 

Cr 298.59 267.89 259.02 278.54 

Fe 175.18 224.29 247.40 203.11 

K 2.50 3.96 4.92 3.25 

Li 7.43 12.4 15.97 9.93 

Mo 335.10 325.04 321.81 328.71 

Na 4.41 7.56 9.92 5.98 

Nb 127.25 100.46 93.87 109 

Ta 166.76 190.41 199.86 180.87 

V 136.79 126.33 123.19 130.03 

W 408.65 410.07 410.55 409.54 

C 963.66 1037.68 1064.95 1008.86 

Ge 117.23 135.63 143.12 128.15 

Si 147.69 168.02 176.10 159.84 

CuZn 70.13 116.95 150.42 93.69 

Cu 3 Au 103.15 133.9 148.67 120.54 

NiAl 144.94 200.23 229.4 175.35 

SS 316L 149.25 212.69 247.81 183.66 

Table 2 

Comparison of the present model predictions of E hkl 
LD 

(in GPa) along LD 

with those by Clausen et al. (1998) for Cu and SS 316L as well as with 

SXRD measurements for SS 316L ( Chen et al., 2019 ). 

E 200 
LD E 220 

LD E 111 
LD E 311 

LD 

Cu (this work) 101.2 139.1 158.9 122.1 

Cu ( Clausen et al., 1998 ) 101.5 138.7 158.0 121.8 

SS 316L (this work) 149.3 212.7 247.8 183.7 

SS 316L ( Clausen et al., 1998 ) 149.8 212.0 246.2 183.2 

SS 316L ( Chen et al., 2019 ) 139.1 219.1 264.1 179.6 

 

 

 

 

 

 

6. Diffraction elastic constants along TD 

To extend the method in Section 5 for determining the diffraction elastic constants along TD, we note that the corre-

sponding unit vector along LD is not unique. Hence, one needs to account for a set of LD vectors that are perpendicular to

a given TD. Consider a { hkl } grain family along TD in an RVE ( Fig. 1 b). The grains in this family are numbered as 1, … β , …

N . In the local crystal basis of grain β , the component of the unit vector m along the [ hkl ] direction can be expressed as 

m = ( m 1 , m 2 , m 3 ) = ( h, k, l ) 
/√ 

h 

2 + k 2 + l 2 (28) 

As noted above, the unit vector along LD for grain β , denoted as n 

(β) , can be any vector perpendicular to m . Without

loss of generality, we can express n 

(β) using a single variable θ . Specifically, we introduce the orthonormal basis vectors p

and q in the plane perpendicular to m 

p = ( p 1 , p 2 , p 3 ) = ( −k, h, 0 ) / 
√ 

h 

2 + k 2 

q = ( q 1 , q 2 , q 3 ) = 

(
hl , kl , −h 

2 − k 2 
)/√ (

h 

2 + k 2 
)(

h 

2 + k 2 + l 2 
)

(29) 

While there are many ways of choosing a pair of p and q , we first select a unit vector p perpendicular to m , and then

determine q by the cross product of p and m . Since n 

(β) associated with grain β lies in the plane spanned by p and q , we

can write n 

(β) as 

n 

(β) = p cos θ (β) + q sin θ (β) (30) 

where θ ( β) denotes the angle between n 

( β) and p . By this construction, n 

( β) is perpendicular to m automatically. 

Similar to ε (α) 
LD 

in Eq. (3) , the lattice strain along TD in grain β can be calculated as 

ε ( β) 
TD 

= ε ( β) 
ij 

m i m j (31) 
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Substitution of Eq. (1) (replacing α by β) into Eq. (31) yields 

ε ( β) 
TD 

= σ0 U 

( β) 
ijkl 

m i m j n 

( β) 
k 

n 

( β) 
l 

(32)

With n i m i = 0 and Eq. (30) , Eq. (32) can be expressed as 

ε ( β) 
TD 

σ0 

= 

3 a − 2 b 

3 

+ 

3 ∑ 

i =1 

(
p i cos θ ( β) + q i sin θ ( β) 

)2 
m 

2 
i (33)

The average lattice strain ε TD in the { hkl } grain family along TD is, therefore, given by 

ε TD = 

1 

N 

N ∑ 

β=1 

ε ( β) 
TD 

(34)

The diffraction elastic constant along TD is defined as 

1 

E hkl 
TD 

= 

ε TD 

σ0 

= 

1 

σ0 N 

N ∑ 

β=1 

ε ( β) 
TD 

(35)

Since σ 0 and ε (β) 
TD 

have opposite signs by virtue of Poisson’s effect, E hkl 
TD 

defined in Eq. (35) is negative. Substituting

Eq. (33) into Eq. (35) yields 

1 

E hkl 
TD 

= 

1 

N 

N ∑ 

β=1 

[ 

3 a − 2 b 

3 

+ 2 ( b − c ) 

3 ∑ 

i =1 

(
p i cos θ ( β) + q i sin θ ( β) 

)2 
m 

2 
i 

] 

(36)

For a sufficiently large RVE, the { hkl } grain family along TD should contain a sufficient number of randomly oriented

grains with n 

(β) in the plane spanned by p and q . Hence, one can change the summation over β grains in Eq. (36) to the

integration over θ from 0 to 2 π, and then use Eq. (30) to obtain 

1 

E hkl 
TD 

= 

1 

σ0 2 π

∫ 2 π

0 

ε TD ( θ ) dθ

= 

3 a − 2 b 

3 

+ 2 ( b − c ) 
1 

2 π

∫ 2 π

0 

3 ∑ 

i =1 

( p i cos θ + q i sin θ ) 
2 
m 

2 
i dθ

= 

3 a − 2 b 

3 

+ ( b − c ) 

3 ∑ 

i =1 

(
p 2 i + q 2 i 

)
m 

2 
i (37)

Substituting Eqs. (28) and (29) into Eq. (37) , we obtain 

1 

E hkl 
TD 

= 

3 a − 2 b 

3 

+ 2 ( b − c ) 
 (38)

where the orientation index parameter 
 is defined in Eq. (27) . 

Similar to E hkl 
LD 

, we calculated the numerical values of E hkl 
TD 

using Eq. (38) and single crystal elastic constants in the Ap-

pendix. Table 3 lists the numerical results of E hkl 
TD 

for 26 representative elastically isotropic polycrystals with FCC, BCC and

DC crystal symmetries. 

7. Diffraction elastic constants along any Q direction 

We further extend the method in Section 6 to derive the solution of diffraction elastic constants along the direction

of any diffraction vector Q (see Fig. 1 a). Consider a { hkl } grain family along the Q direction in an RVE. The grains in this

family are numbered as 1, … γ , … N . The orientation of these grains can be represented by a single variable θ ( γ ) and three

orthogonal unit vectors as shown in Fig. 2 , 

Q = ( Q 1 , Q 2 , Q 3 ) = ( h, k, l ) / 
√ 

h 

2 + k 2 + l 2 

p = ( p 1 , p 2 , p 3 ) = ( −k, h, 0 ) / 
√ 

h 

2 + k 2 

q = ( q 1 , q 2 , q 3 ) = 

(
hl , kl , −h 

2 − k 2 
)
/ 

√ (
h 

2 + k 2 
)(

h 

2 + k 2 + l 2 
) (39)

In Eq. (39) , the components of Q, p and q are all expressed in the local crystal basis of grain γ . 

For the { hkl } grain family along the Q direction, the constituent grains must have a constant angle between Q and the

loading direction n , such that n 

( γ ) associated with grain γ can be expressed as 

n 

( γ ) = Q cos ϕ + 

(
p cos θ ( γ ) + q sin θ ( γ ) 

)
sin ϕ (40)



8 Y. Zhang, W. Chen and D.L. McDowell et al. / Journal of the Mechanics and Physics of Solids 138 (2020) 103899 

Table 3 

Magnitude of diffraction elastic constants | E hkl 
TD 

| along TD (in GPa). 

| E 200 
TD | | E 220 

TD | | E 111 
TD | | E 311 

TD | 
Ag 165.35 247.21 296.06 208.77 

Al 189.76 206.98 213.44 200.22 

Au 144.77 202.29 233.17 176.24 

Cu 268.3 420.22 517.98 347.12 

Ir 1824.28 2317.3 2546.73 2105.67 

Ni 556.41 848.88 1029.22 710.07 

Pb 43.16 67.52 83.16 55.81 

Pd 262.84 378.12 442.87 325.09 

Pt 392.63 466.65 497.94 436.08 

Cr 1722.85 1294.79 1195.75 1426.61 

Fe 538.86 812.42 977.91 683.39 

K 6.50 12.52 18.11 9.31 

Li 18.67 37.64 56.92 27.32 

Mo 1168.72 1108.85 1090.23 1130.38 

Na 12.17 28.57 51.86 19.03 

Nb 343.44 252.56 232.08 280.12 

Ta 471.74 572.27 616.03 530.25 

V 387.47 346.78 335.06 360.88 

W 1456.48 1465.52 1468.55 1462.14 

C 8391.01 12,171.11 14,321.73 10,424.59 

Ge 489.97 683.84 787.73 596.12 

Si 590.51 778.95 871.67 696.31 

CuZn 175.65 352.21 529.7 256.37 

Cu 3 Au 264.74 375.35 436.09 324.87 

NiAl 408.88 669.73 850.62 541.3 

SS 316L 433.18 763.86 1024.57 594.95 

Fig. 2. In the coordinate system spanned by the orthonormal vectors { Q , p , q }, the dashed-line circle represents all the unit vectors n that form a constant 

angle ϕ with the diffraction vector Q . 
where ϕ denotes the angle between Q and n 

( γ ) , and θ ( γ ) denotes the angle between p and the vector component of n 

( γ ) 

resolved in the plane of p and q . 

The normal strain along Q for grain γ , denoted as ε (γ ) 
Q 

, is given by 

ε ( γ ) 
Q 

= σ0 U 

( γ ) 
i jkl 

Q i Q j n 

( γ ) 
k 

n 

( γ ) 
l 

(41) 

Substitution of Eqs. (22) , (39) and (40) into Eq. (41) yields 

ε ( γ ) 
Q 

σ0 

= 

3 a − 2 b 

3 

+ 2 c cos 2 ϕ + 2 ( b − c ) ( 1 − 2
) cos 2 ϕ 

+ 2 ( b − c ) 

3 ∑ 

i =1 

Q 

2 
i 

[ 
2 Q i 

(
p i cos θ ( γ ) + q i sin θ ( γ ) 

)
sin ϕ cos ϕ + 

(
p i cos θ ( γ ) + q i sin θ ( γ ) 

)2 
sin 

2 ϕ 

] 
(42) 

The average lattice strain ε̄ Q in the { hkl } grain family along Q is given by 

ε̄ Q = 

1 

N 

N ∑ 

γ =1 

ε (γ ) 
Q 

(43) 
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Fig. 3. Plot of the reciprocal of diffraction elastic constant 1/ E hkl as a function of orientation parameter 
 along (a) LD and (b) TD for FCC Cu, Ni and BCC 

Nb. The solid lines represent the micromechanics (Micro) solutions, and the squares the finite element (FE) simulation results for the representative grain 

families of {200}, {311}, {220} and {111}, with their respective 3 
 values of 0, 57/121, 3/4 and 1. Each FE data point is the average of results from 10 FE 

polycrystal models with different random grain orientations; small error bars indicate negligible standard deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diffraction elastic constant along Q is, therefore, defined as 

1 

E hkl 
Q 

= 

ε̄ Q 
σ0 

= 

1 

σ0 N 

N ∑ 

γ =1 

ε ( γ ) 
Q 

(44)

With a sufficient number of grains, one can change the summation over γ in Eq. (44) to the integration over θ from 0 to

2 π. Substituting Eq. (42) into Eq. (44) , we obtain the general solution of diffraction elastic constant E hkl 
Q 

for any diffraction

vector Q . 

1 

E hkl 
Q 

= 

1 

σ0 2 π

∫ 2 π

0 

ε Q ( θ ) dθ

= 

3 a − 2 b 

3 

+ 2 c cos 2 ϕ + 2 ( b − c ) ( 1 − 2
) cos 2 ϕ + ( b − c ) 

3 ∑ 

i =1 

Q 

2 
i 

(
p 2 i + q 2 i 

)
sin 

2 ϕ 

= 

3 a − 2 b 

3 

+ 2 b cos 2 ϕ + 2 ( b − c ) 
(
sin 

2 ϕ − 2 cos 2 ϕ 

)

 (45)

This expression is reduced to Eq. (26) when ϕ = 0 ◦ and Eq. (38) when ϕ = 90 ◦. Hence the solutions of E hkl 
LD 

and E hkl 
TD 

are

two special cases of the general solution of E hkl 
Q 

for any diffraction vector Q . 

8. Validation by finite element simulations 

To validate our micromechanics solutions, we performed polycrystal elasticity finite element simulations for FCC Cu, Ni,

and BCC Nb using the commercial finite element program ABAQUS/Explicit (2016) . The constitutive model of the anisotropic

linear elasticity of single crystal grains was implemented via a user material subroutine ( Chen et al., 2019 ). For finite element

simulations, we constructed a “texture-free” polycrystal model consisting of 80 0 0 cubic elements, where each element rep-

resents a cubic-symmetry grain with random orientation. During a finite element simulation of uniaxial tensile deformation,

the lattice strain in each { hkl } grain family was determined by averaging the elastic strain of grains with their respective

[ hkl ] direction along LD or TD (within a deviation of ±5 °). Then we calculated the diffraction elastic constant E hkl by the

ratio of the applied tensile stress and corresponding lattice strain. 

Fig. 3 shows the diffraction elastic constants of Cu, Ni, and Nb along LD ( Fig. 3 a) and TD ( Fig. 3 b) calculated from the

micromechanics solutions (i.e., Eq. (26) for LD and Eq. (38) for TD) as well as from the polycrystal elasticity finite element

simulations. The micromechanics solutions (solid lines) are plotted as a function of the orientation index parameter 3 
 cov-

ering all the possible { hkl } grain families for a polycrystal with random grain orientations. The polycrystal elasticity finite

element simulation results (squares) are given for the {200}, {311}, {220} and {111} grain families. For each family, we used

10 finite element polycrystal models with different random grain orientations, so as to obtain the mean value and standard
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deviation of 1/ E hkl . It is seen that the finite element results are in good agreement with the micromechanics solution, despite

small differences in the numerical results of 1/ E hkl between the two methods. These differences may arise from several ap-

proximations used in the micromechanics solution, including the self-consistent method of polycrystal homogenization and 

the spherical grain shape, as well as the use of a single element to represent each grain in the finite element simulations. 

As shown in Fig. 3 , 1/ E hkl is linearly dependent on 3 
. This is predicted by the micromechanics solutions, i.e., Eq. (26) for

LD and Eq. (38) for TD. As discussed earlier, the slope of the 1/ E hkl versus 3 
 curve is dictated by the sign of b − c, which is

further controlled by the anisotropy ratio A , with A = 1.0 for isotropic elasticity, 3.21 for Cu, 2.57 for Ni and 0.49 for Nb. As

listed in the Appendix, the A values are greater than 1 for most cubic polycrystals, so that b − c < 0 . As a result, the slopes

of both the 1 /E hkl 
LD 

versus 3 
 and the 1 /E hkl 
TD 

versus 3 
 curves are negative. In contrast, the positive slope for Nb is a result

of b − c > 0 . Among 26 cubic polycrystals in the Appendix, Cr, Mo, and V also have A < 1 and thus should have positive

slopes for their respective 1/ E hkl versus 3 
 curves. In addition, the slopes of the 1 /E hkl 
LD 

versus 3 
 and the 1 /E hkl 
TD 

versus 3 


curves for Cu are larger than the corresponding ones for Ni because of the higher elastic anisotropy of Cu. 

9. Concluding remarks 

We have obtained a general analytic solution of the grain-level lattice strains and diffraction elastic constants for elas-

tically isotropic polycrystals using a self-consistent micromechanics model. This solution is applicable to a broad class of

“texture-free” polycrystals with cubic crystal symmetry and only requires an input of the three independent elastic con-

stants of a cubic crystal. It reveals direct linear relationships between the reciprocal of the diffraction elastic constant and

the orientation index parameter, as given by Eq. (26) for the tensile loading direction, Eq. (38) for the transverse direction,

and Eq. (45) for the direction of any diffraction vector. Our solution procedure employs the components of related vectors

and tensors resolved in the local crystal basis, such that it can be readily understood and applied. For example, this ap-

proach can be taken to obtain the related results such as resolved shear stresses on dislocation slip systems for the study

of progressive yielding in different grain families ( Chen et al., 2019 ). From a straightforward numerical implementation of

this solution by MATLAB, we have calculated diffraction elastic constants for 26 representative cubic polycrystals. The re-

sults agree closely with modeling and experimental results in the literature as well as with our polycrystal elasticity finite

element simulations. 

Theoretical predictions of grain-level lattice strains and diffraction elastic constants complement in situ synchrotron X-

ray and neutron diffraction experiments. They can be directly compared with experimental measurements of diffraction

elastic constants, and also can be used for analysis of microscale residual stresses ( Hu et al., 2016 ) and progressive yield-

ing ( Chen et al., 2019 ; Wang et al., 2018b ). We expect these predictions will facilitate high-throughput and data-analytics

studies of the mechanical behavior of polycrystalline materials with complex compositions and microstructures, such as

high-entropy alloys ( Wang et al., 2018a ; Wu et al., 2014 ), additively manufactured alloys ( Brown et al., 2017 ; Chen et al.,

2019 ; Wang et al., 2018b ), heterogeneous nanostructured metals and alloys ( Ma and Zhu, 2017 ; Wang et al., 2010 ), and oth-

ers. However, one should bear in mind the assumptions used in the present model, including equiaxed grains, absence of

textures, and lack of pore defects. Our solutions are applicable to cases where these assumptions can be used appropriately.

The analytic solution in this paper is derived for elastically isotropic polycrystals with cubic crystal symmetry. The present

method can be extended to other types of elastically isotropic polycrystals with lower crystal symmetries, such as hexagonal

close-packed and monoclinic crystals that have been studied by diffraction experiments ( Kumar et al., 2018 ; Stebner et al.,

2013 ). For these types of polycrystals, the constrained compliance tensor U cannot be expressed in a highly compact form

as given in Eq. (21) for cubic polycrystals. Hence the corresponding analytic solutions of diffraction elastic constants be-

come more complex and are only partially provided by Behnken and Hauk (1986) . Additional effort is needed to obtain the

complete analytic solutions by extending the current method. We hope to obtain and report these results in the near future.
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Appendix 

Table A1 . 

Table A1 

Elastic properties of cubic polycrystals. The single crystal elastic constants of C 11 , C 12 and C 44 (in GPa) are taken from 

Simmons and Wang (1971) , except for those of SS 316L from Clausen et al. (1998) . The effective elastic consonants K 

and μ (in GPa) for elastically isotropic polycrystals are calculated from Eq. (17) and Eq. (18) , respectively. The anisotropy 

ratio A is calculated by A = 2 C 44 / ( C 11 − C 12 ) . 

Material Structure C 11 C 12 C 44 K̄ μ̄ A 

Ag FCC 124.00 93.40 46.10 103.60 30.20 3.01 

Al FCC 107.30 60.90 28.30 76.37 26.15 1.22 

Au FCC 192.90 163.80 41.50 173.50 27.89 2.85 

Cu FCC 168.40 121.40 75.40 137.07 48.17 3.21 

Ir FCC 580.00 242.00 256.00 354.67 216.97 1.51 

Ni FCC 246.50 147.30 124.70 180.37 86.90 2.51 

Pb FCC 49.50 42.30 14.90 44.70 8.79 4.14 

Pd FCC 227.10 176.00 71.70 193.03 48.28 2.81 

Pt FCC 346.70 250.70 76.50 282.70 63.69 1.59 

Cr BCC 339.80 58.60 99.00 152.33 113.89 0.70 

Fe BCC 231.40 134.70 116.40 166.93 82.45 2.41 

K BCC 4.14 3.31 2.63 3.59 1.33 6.34 

Li BCC 13.50 11.44 8.78 12.13 4.05 8.52 

Mo BCC 440.80 172.40 121.70 261.87 126.56 0.91 

Na BCC 6.15 4.96 5.92 5.36 2.56 9.95 

Nb BCC 240.20 125.60 28.20 163.80 37.64 0.49 

Ta BCC 260.20 154.50 82.60 189.73 69.23 1.56 

V BCC 228.00 118.70 42.60 155.13 47.09 0.78 

W BCC 522.40 204.40 160.80 310.40 160.08 1.01 

C DC 949.00 151.00 521.00 417.00 468.14 1.31 

Ge DC 128.40 48.20 66.70 74.93 54.45 1.66 

Si DC 166.70 64.40 79.80 98.50 66.83 1.56 

CuZn FCC 129.04 109.56 82.45 116.05 38.16 8.47 

Cu 3 Au FCC 190.69 138.30 66.31 155.76 46.29 2.53 

NiAl BCC 211.55 143.23 112.11 166.00 70.83 3.28 

SS 316L FCC 204.60 137.70 126.20 160.00 75.64 3.77 
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