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a b s t r a c t 

Structural gradients in metallic materials can give rise to substantial extra strengths com- 

pared to their non-gradient counterparts. This strengthening effect originates from the 

plastic strain gradients arising in plastically deformed gradient structures. Here we de- 

velop a gradient theory of plasticity by incorporating the strengthening effect of plastic 

strain gradients into the classical J 2 flow theory. This gradient theory is numerically im- 

plemented to study the strain gradient plasticity in gradient nanotwinned (GNT) Cu with 

different twin thickness gradients and accordingly different built-in strength gradients. Nu- 

merical simulations reveal the primary features of gradient plasticity in GNT Cu under 

uniaxial tension, including progressive yielding, gradient distributions of plastic strain and 

extra plastic flow resistance. The combined simulation and experimental results show that 

the extra strength of GNT Cu depends on the square root of the built-in strength gradient 

and also on the square root of the saturated plastic strain gradient in fully yielded GNT 

samples. This finding enables the predictions of optimal gradient structures and associated 

gradient strength distributions, which suggest possible routes for achieving the maximum 

strength of GNT Cu. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Gradient structured metals have received considerable attention in recent years due to their enhanced strength, ductility

and fatigue resistance compared to non-gradient counterparts ( Lu, 2016 ; Ma and Zhu, 2017 ; Wu and Zhu, 2017 ). Structural

gradients lead to plastic strain gradients ( Aifantis, 1984 ; Ashby, 1970 ; Bassani, 2001 ; Fleck et al., 1994 ; Gudmundson, 2004 ;

Lele and Anand, 20 08 , 20 09 ; Niordson and Hutchinson, 2003 ; Nix and Gao, 1998 ) that can give rise to substantial extra

strengths ( Cheng et al., 2018 ; Fang et al., 2011 ; Wu et al., 2014 ). However, the mechanics of gradient plasticity in gradient

structures has not been clearly understood ( Li and Soh, 2012 ; Li et al., 2017 ; Wei et al., 2014 ; Zeng et al., 2016 ). 

Recently, Cheng et al. ( Cheng et al., 2018 ) reported the fabrication of gradient nanotwinned (GNT) Cu having different

gradient distributions of nanoscale twin thicknesses and thus different built-in yield strength gradients. They showed that

an increase in the nanostructural gradient, along with a concomitant increase in the strength gradient, causes a marked

increase of the sample-level yield strength; and a large nanostructural gradient produces a high sample-level yield strength

exceeding that of the strongest component in the gradient nanostructure. In particular, they measured the sample-level

extra strength that increases with the built-in strength gradient in a nonlinear manner. These results call for a fundamental

understanding of the strengthening effects of plastic strain gradients arising from gradient nanostructures. In addition, given
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Fig. 1. Four types of GNT Cu samples, named GNT-1, GNT-2, GNT-3 and GNT-4, respectively ( Cheng et al., 2018 ). (a) Schematic illustration of GNT-1 to GNT- 

4 samples. Through sample thickness, gradient twin structures exhibit periodic, piecewise linear, continuous variations of twin thickness, in conjunction 

with gradient grain sizes. Preferentially oriented nanometer-scale twin lamellas (with twin boundaries represented by purple lines) are embedded within 

micrometer-scale columnar-shaped grains (with grain boundaries represented by blue lines). (b) Measured micro-indentation hardness profiles through the 

sample thickness of GNT-1 to GNT-4. Each hardness curve is labeled with its corresponding hardness gradient g (in unit of GPa/mm). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the high tunability of its gradient structures, GNT Cu can serve as an effective model system for benchmarking the gradient

theories of plasticity. 

In this paper, we develop a gradient theory of plasticity by incorporating the strengthening effect of plastic strain gra-

dients into the J 2 flow theory. Motivated by the lower-order gradient theory of plasticity by Bassani ( Bassani, 2001 ), we

introduce a scalar measure of plastic strain gradients into a hardening rate relation, so that higher order stresses and addi-

tional boundary conditions are not needed. This approach enables an effective analysis of strain gradient plasticity without

much mathematical complexity. To study the gradient plastic responses of GNT Cu under uniaxial tension, we reduce the

general three-dimensional (3D) gradient theory into a one-dimensional (1D) theory, and numerically implement this 1D

theory with the finite difference method. The associated numerical results reveal the primary effects of strain gradient plas-

ticity on GNT Cu with different structural gradients. In addition, we numerically implement the 3D gradient theory into the

general finite element package ABAQUS/Explicit ( ABAQUS/Explicit, 2016 ). Numerical results from 3D gradient plasticity fi-

nite element (GPFE) simulations confirm those from 1D finite difference simulations, and further reveal the impact of stress

components neglected in the 1D gradient theory and simulations. Based on insights gained from these gradient plasticity

simulations, we explore the optimization of strength gradients toward achieving the maximum strength of GNT Cu. 

2. Experiment 

Here we provide a brief overview of the experimentally measured structural and strength gradients in GNT Cu. These

results provide a basis for our development of the gradient plasticity theories and associated computational models. As

described in detail by Cheng et al. ( Cheng et al., 2018 ), direct current electrodeposition was used to prepare GNT Cu samples

with a controlled pattern of gradient nanotwinned structures. Fig. 1 a shows the schematic illustration of four types of GNT

Cu samples, named GNT-1, GNT-2, GNT-3 and GNT-4, respectively. The corresponding electron microscopy images of GNT

microstructures can be found in Cheng et al. ( Cheng et al., 2018 ). These samples have a similar thickness L around 400 μm,

but different structural gradients through sample thickness. At each local region, preferentially oriented nanometer-scale

twin lamellas are embedded within micrometer-scale columnar-shaped grains. As schematically illustrated in Fig. 1 a, GNT-

1 exhibits approximately linear variations of twin thickness and grain size through sample thickness; the average twin

thickness increases from 29 nm to 72 nm, with a concomitant increase of the average grain size from 2.5 μm to 15.8 μm.

Despite the dual gradient variations of twin thickness and grain size, the strengthening effects are mainly controlled by the

gradient distributions of twin lamellas ( Cheng et al., 2018 ), due to their much smaller twin thicknesses than grain sizes.

Hereafter, our description of structural gradients will focus on gradient distributions of nanotwinned structures. As also

illustrated in Fig. 1 a, GNT-2, GNT-3 and GNT-4 exhibit periodic, piecewise linear, continuous variations of twin thickness

( Cheng et al., 2018 ), which can be approximately represented by triangle waves of twin thickness with different wavelengths,

i.e., about L, L /2 and L /3.5, respectively. In fact, the linear profile of twin thickness in GNT-1 can be represented by the half

period of a triangle wave with wavelength 2 L. For GNT-2 to GNT-4, the maximum and minimum twin thicknesses are close

to those of GNT-1. As such, their twin thickness gradients are 2, 4 and 7 times that of GNT-1. We note that the control of



Y. Zhang, Z. Cheng and L. Lu et al. / Journal of the Mechanics and Physics of Solids 140 (2020) 103946 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structural gradients becomes increasingly difficult with decreasing twin thickness. As a result, GNT-4 has an actual sample

thickness larger than 400 μm, such that its twin thickness gradient is not as ideal as 8 times that of GNT-1. 

Gradient nanotwinned structures lead to gradient strengths in GNT Cu. Fig. 1 b shows the measured micro-indentation

hardness profiles of GNT-1 to GNT-4 through sample thickness, which can also be represented by triangle waves of hardness

with different wavelengths, i.e., about 2 L , L, L /2 and L /3.5, respectively. These triangle wave profiles have the approximately

identical maximum hardness 1.5 GPa and minimum hardness 0.8 GPa. The measured hardness gradient, denoted as g, for

GNT-1 to GNT-4 is 1.75, 3.2, 6.0 and 11.6 GPa/mm, respectively . An increase in hardness gradient causes a marked increase

in the sample-level yield strength ( Cheng et al., 2018 ). This result will be presented along with the experimentally measured

stress-strain curves of GNT Cu in Section 4 , where it will be compared with the corresponding gradient plasticity simulation

result. 

3. A theory of strain gradient plasticity 

To study the mechanical behavior of GNT Cu, we develop a lower-order theory of strain gradient plasticity by incorpo-

rating the strengthening effect of plastic strain gradients into the classical J 2 flow theory. In the following, we present the

gradient theory using index notation − a free index ranges over 1 to 3 and repeated indices mean summation. The total

strain rate ˙ ε 
i j 

is decomposed into 

˙ ε ij = ˙ ε e ij + ˙ ε p 
ij 

(1)

In Eq. (1) , the elastic strain rate ˙ ε e 
ij 

is related to the stress rate ˙ σi j by the generalized Hooke’s law 

˙ ε e ij = 

1 

E 

[
( 1 + v ) ̇ σij − v ˙ σkk δij 

]
(2)

where E is Young’s modulus, v is Poisson’s ratio, δi j = 1 when i = j and δi j = 0 otherwise. The plastic strain rate ˙ ε p 
ij 

obeys

the J 2 flow rule 

˙ ε p 
ij 

= 

˙ ε 
p 3 σ ′ 

ij 

2 σ
(3)

In Eq. (3) , σ ′ 
i j 

is the deviatoric stress given by σ ′ 
i j 

= σi j − σkk δi j / 3 , σ̄ is the equivalent stress 

σ = 

√ 

3 

2 

σ ′ 
ij 
σ ′ 

ij 
(4)

and 

˙ ε 
p 

is the equivalent plastic strain rate given by a simple power-law relation 

˙ ε 
p = 

˙ ε 
p 

0 

(
σ

s 

)1 /m 

(5)

where ˙ ε 
p 

0 is the reference plastic strain rate, s is the plastic flow resistance that evolves with plastic deformation, and m is

the strain rate sensitivity parameter. The accumulated equivalent plastic strain is given by ε p = 

∫ t 
0 

˙ ε 
p 

d t ′ . 
In the current gradient plasticity theory, the initial value of the plastic flow resistance s (equivalent to initial yield

strength) is prescribed as a function of spatial coordinate for a given GNT model. Under applied load, s increases with both

plastic strain and plastic strain gradient in a nonlinear manner. Specifically, an effective measure of plastic strain gradients

is introduced into a hardening rate relation, as motivated by the gradient theory of plasticity from Bassani ( Bassani, 2001 ).

That is, the instantaneous hardening rate is given by 

˙ s = h ̇

 ε 
p 

(6)

where the hardening rate coefficient h is 

h = 

h 0 

1 + 

(
ε p /ε 1 

)n 1 

[ 

1 + 

κ
√ 

α

1 + 

(
ε p /ε 2 

)n 2 

] 

(7)

In Eq. (7) , the term outside the square bracket represents the conventional hardening effect of plastic strain. In this term,

h 0 is the hardening rate constant; ɛ 1 and n 1 control the nonlinear behavior of plastic strain hardening, such that the rate of

plastic strain hardening when ε p > ε 1 becomes much smaller than that when ε p < ε 1 . Note that in Eq. (7) , the second

term inside the square bracket reflects the extra hardening effect due to plastic strain gradients. Here α is defined as 

α = 

√ 

ε p 
,i 
ε p 

,i 
(8)

which is a scalar measure of spatial gradients of the accumulated equivalent plastic strain ε p 
,i 

= ∂ ε p /∂x i . As such, the hard-

ening rate due to plastic strain gradients scales with κ
√ 

αh , where κ is a constant with the unit of 
√ 

m , and κ
√ 

α serves
0 
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Fig. 2. GNT-1 to GNT-4 models. (a) A rectangular block is taken as a representative volume element of GNT Cu, with a gradient distribution of initial plastic 

flow resistance in the x-y cross section and under uniaxial tensile deformation along the z -axis. (b) A triangle wave profile of initial plastic flow resistance 

along y -axis, with the maximum resistance s 0, max , minimum resistance s 0, min and wavelength λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as a dimensionless hardening rate magnification factor arising from plastic strain gradients. In addition, ɛ 2 and n 2 are used

to control the range of ε p where the hardening effect of plastic strain gradients is pronounced. That is, this hardening effect

predominates when ε p is less than ɛ 2 , but it decays quickly as ε p increases above ɛ 2 . To quantitatively represent the harden-

ing effects of both plastic strain and plastic strain gradient on GNT Cu, ɛ 2 is taken to be much smaller than ɛ 1 ; in addition,

an appropriate κ is taken such that κ
√ 

αh 0 is much larger than h 0 . As a result, Eq. (7) captures a two-stage hardening re-

sponse arising from plastic strain gradients in GNT Cu. Specifically, a characteristically high hardening rate on the order of

κ
√ 

αh 0 predominates when ε p is less than ɛ 2 , while a characteristically low hardening rate on the order of h 0 takes over

when ε p becomes greater than ɛ 2 . This two-stage hardening is characteristic of the experimentally measured stress-strain

response of GNT Cu ( Cheng et al., 2018 ) and implies the following dislocation strengthening effects in gradient structures.

In the first stage of hardening, geometrically necessary dislocations (GNDs) ( Ashby, 1970 ) are quickly generated to accom-

modate the plastic strain gradients resulting from the built-in strength gradients. These GNDs give rise to high hardening

rates at small strains, thus reflecting a strong strengthening effect of plastic strain gradients. In the second stage, hardening

due to plastic strain gradients becomes saturated and thus switches to the conventional plastic strain hardening, leading to

markedly reduced hardening rates at large strains. 

4. Gradient plasticity in GNT Cu 

To study the gradient plastic responses of GNT Cu under uniaxial tension, we set up GNT-1 to GNT-4 models with differ-

ent strength gradients in Section 4.1 . Considering the dominant axial stresses in these GNT models, we reduce the general

3D gradient theory into a 1D gradient theory in Section 4.2 . This 1D theory is numerically implemented to simulate the

tensile responses of GNT-1 to GNT-4 models, as described in Section 4.3 . Numerical results are compared with experimental

measurements in terms of the overall stress-strain responses of GNT-1 to GNT-4. Detailed analysis of numerical results for

GNT-1 reveals the primary strengthening effects of gradient plasticity in GNT Cu. 

4.1. GNT-1 to GNT-4 models 

As shown in Fig. 2 a, we consider a rectangular block, with the dimensions of L x × L y × L z , as a representative volume

element of GNT-1 to GNT-4 samples. The z -axis of the block is oriented along the tensile loading direction, and the y -axis

is along the sample thickness direction. A gradient distribution of the initial plastic flow resistance s (y, t = 0) (equivalent to

initial tensile yield strength) is prescribed in the x-y cross section. Based on the experimentally measured hardness profiles

of GNT-1 to GNT-4 samples ( Fig. 1 ), triangle waves with different wavelengths and gradients are used to represent s (y, t = 0)

for GNT-1 to GNT-4 models. A typical triangle wave ( Fig. 2 b) is prescribed by three parameters: the maximum resistance

s 0, max , minimum resistance s 0, min , and wavelength λ. To facilitate comparison between different GNT models, s 0, max is taken

to be identical for GNT-1 to GNT-4 models and so is s 0, min . Consider GNT-1 as an example. Its linear profile of s GNT −1 (y, t = 0)
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corresponds to the half period of a triangle wave, λGNT −1 / 2 = L y = 400 μm , and is expressed as 

s GNT −1 ( y, t = 0 ) = s 0 , max − g GNT −1 
s · y (9)

where g GNT −1 
s is the gradient of the initial plastic flow resistance of GNT-1. For GNT-2 to GNT-4 models, their triangle wave

profiles of s (y, t = 0) have the same half period form as Eq. (9) , but the respective g s is increased to 2, 4 and 7 times g GNT −1 
s ,

and the respective λ is reduced to 1/2, 1/4 and 1/7 times λGNT −1 . 

4.2. 1D gradient theory of plasticity 

Considering the fact that s (y, t = 0) is only a function of coordinate y in GNT-1 to GNT-4 models, we assume all the

stress and strain fields from uniaxial tension depend only on coordinate y and time t . We further assume that σ zz ( y, t )

is the only nonzero stress component. Compared to a full 3D stress analysis, this simplified 1D stress state facilitates a

more physically transparent analysis of the primary strengthening effects of gradient plasticity. When a uniaxial stress state

prevails, equilibrium is trivially satisfied. It follows that according to Eq. (4) , the equivalent stress σ̄ (y, t) is reduced to the

axial stress σ zz ( y, t ); according to Eq. (3) , the equivalent plastic strain rate ˙ ε 
p 
(y, t) is reduced to the axial strain rate ˙ ε p zz (y, t) ,

such that the lateral strain rate is given by ˙ ε p xx (y, t) = ˙ ε p yy (y, t) = − ˙ ε 
p 
(y, t) / 2 . Once σ zz ( y, t ) is solved, the average axial stress

σ avg 
zz (t) is obtained by 

σ avg 
zz ( t ) = 

1 

L y 

∫ L y 

0 

σzz 

(
y ′ , t 

)
d y ′ (10)

To evaluate σ avg 
zz (t) , we first solve for ε p zz (y, t) , s ( y, t ) and σ zz ( y, t ) by time integration of their respective rate equations.

In the present 1D gradient theory, the plastic strain rate in Eq. (5) is reduced to 

˙ ε p zz ( y, t ) = 

˙ ε 
p 

0 

(
σzz ( y, t ) 

s ( y, t ) 

)1 /m 

(11)

The accumulated equivalent plastic strain ε p (y, t) is given by ε p (y, t) = ε p zz (y, t) = 

∫ t 
0 ˙ ε p zz (y, t ′ )d t ′ . The scalar measure of

plastic strain gradients α in Eq. (8) is reduced to α = | ∂ ε p (y, t) /∂y | . Then the hardening rate in Eq. (7) becomes 

h ( y, t ) = 

h 0 

1 + 

(
ε p /ε 1 

)n 1 

⎡ 

⎣ 1 + 

κ
√ ∣∣∂ ε p /∂y 

∣∣
1 + 

(
ε p /ε 2 

)n 2 

⎤ 

⎦ (12)

As discussed earlier, with an appropriate choice of material parameters, the hardening rate relation of Eq. (12) represents

a two-stage hardening response of GNT Cu. That is, a high hardening rate on the order of κh 0 

√ | ∂ ε p /∂ y | predominates

when ε p is less than ɛ 2 , while a low high hardening rate on the order of h 0 predominates when ε p is greater than ɛ 2 . Once

˙ ε p zz (y, t) and h ( y, t ) are known, the hardening rate ˙ s (y, t) is determined by ˙ s (y, t) = h (y, t) ̇ ε p zz (y, t) . Time integration of ˙ s (y, t)

yields s (y, t) = 

∫ t 
0 ˙ s (y, t ′ ) d t ′ . Suppose the x-y cross section in Fig. 2 a moves at a constant applied strain rate ˙ ε a zz . The elastic

strain rate along the z -axis is given by 

˙ ε e zz ( y, t ) = ˙ ε a zz − ˙ ε p zz ( y, t ) (13)

and the elastic strain rate in the lateral direction is given by ˙ ε e xx = ˙ ε e yy = −v ̇ ε e zz . The axial stress rate is obtained by 

˙ σzz ( y, t ) = E ˙ ε e zz ( y, t ) (14)

Time integration of ˙ σzz (y, t) yields σzz (y, t) = 

∫ t 
0 ˙ σzz (y, t ′ ) d t ′ . Finally, the average axial stress σ avg 

zz (t) is obtained using

Eq. (10) . 

4.3. Results 

We numerically implement the 1D gradient theory in Section 4.2 to simulate the tensile response of GNT-1 to GNT-4

models. Suppose the x-y cross section of a GNT model moves at a constant applied strain rate ˙ ε a zz of 1 × 10 −3 s −1 . We obtain

the average axial stress σ avg 
zz (t) versus applied tensile strain, ε a zz (t) = ˙ ε a zz t , by explicit time integration of rate equations in

Section 4.2 . The integration time step is taken as 1 × 10 −3 s . Eighty equally spaced integration points along the y- axis are

used. The plastic strain gradient at each integration point is calculated by the central difference method. 

It should be emphasized that special care should be taken when calculating the plastic strain gradients at both the free

surface and at the end point of each half period. This is because outside the free surface, the plastic strain does not exist;

and at the end point of each half period, the plastic strain gradient flips sign when calculated from either side of the end

point. We find that the forward or backward difference method can give a stable, physically-sound numerical solution. In

other words, at the surface of GNT samples, the plastic strain gradient at the material side of a free surface dictates the local

hardening response; inside GNT samples, the plastic strain gradient at one side of the end point of each half period controls

the local hardening response. In contrast, the central difference method gives a zero plastic strain gradient at the end point,



6 Y. Zhang, Z. Cheng and L. Lu et al. / Journal of the Mechanics and Physics of Solids 140 (2020) 103946 

Table 1 

Parameters used in both 1D and 3D gradient plasticity simulations. 

E (GPa) ν m 

˙ ε 
p 

0 (s −1 ) h 0 (MPa) ɛ 1 n 1 ɛ 2 n 2 κ( 
√ 

m ) 

124 0.3 0.001 0.001 2000 0.015 0.6 0.0001 2.0 139.7 

Fig. 3. Comparison of experimental measurements ( Cheng et al., 2018 ) and simulation results of uniaxial tension from the 1D gradient theory of plasticity. 

(a) Tensile engineering stress σ avg 
zz versus engineering strain ε a zz for GNT-1 to GNT-4 from experiments (solid lines) and simulations (solid lines with sym- 

bols). (b) Strain hardening rate d σ avg 
zz / d ε a zz versus true strain for GNT-1 to GNT-4 from experiments (solid lines) and simulations (solid lines with symbols). 

(c) Sample-average yield strength σ1% versus hardness gradient g for GNT-1 to GNT-4 from experiments (red squares) and simulations (blue dots). Also 

plotted is the predicted average yield strength σ1% versus hardness gradient (blue curve) from additional simulations of 25 GNT models with increasing 

hardness gradient by equal increment. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

resulting in an unstable, oscillating solution around the end point. We further find that a similar treatment of plastic strain

gradients is needed for the nonlinear wave profile of initial plastic flow resistance, as to be discussed later. The material

parameters used in our numerical simulations are listed in Table 1 . They are determined by fitting the numerical results of

the stress-strain responses of GNT-1 to GNT-4 models to the corresponding experimental stress-strain curves of GNT-1 to

GNT-4 samples. Because of the small strain rate sensitivity m and low applied strain rate ˙ ε a zz used, our numerical results

represent the rate-independent responses under quasi-static loading conditions. As such, the numerical results of stresses

and strains are presented as functions of applied tensile strain ε a zz without explicit time dependence. 

Fig. 3 a shows the numerical results of the average tensile (engineering) stress σ avg 
zz versus applied tensile (engineering)

strain ε a zz for GNT-1 to GNT-4 models, which reasonably agree with the corresponding experimental results. Fig. 3 b shows

the numerical results of the strain hardening rate d σ avg 
zz / d ε a zz versus applied true strain for GNT-1 to GNT-4 models, which

also reasonably agree with the corresponding experimental results. The experimental and simulated hardening rates clearly

show the two-stage hardening response in GNT Cu, as discussed earlier in Section 3 . Hence, the hardening rate relation of

Eq. (7) can well capture the overall hardening response due to increasing plastic strain and plastic strain gradient. However,

Eq. (7) is a relatively simple nonlinear relation and thus cannot capture all the fine features of the stress-strain responses in
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experiments, such as the hardening rate plateau at the strain of about 2% in GNT-1 and GNT-2. Such plateaus near 2% strain

in experiments suggest some special effect of gradient structures on the transition from the high to low hardening-rate

stage in the experimental GNT samples, which warrant further experimental and modeling studies in the future. 

For each GNT model, the sample-average yield strength is defined as the average tensile stress σ avg 
zz at ε a zz = 1% and

thus denoted as σ 1% . In Fig. 3 c, the predicted σ 1% values for GNT-1 to GNT-4 models (blue circles) are plotted as a function

of hardness gradient g and they reasonably agree with the corresponding experimental results (red squares). It is seen

that the predicted σ 1% for GNT-1 has a relatively large deviation from the corresponding experimental data point. This

difference is mainly attributed to the constant strength gradient used in the GNT-1 model, while a few hardness plateaus,

with nearly zero strength gradients, are present in the experimental GNT-1 sample (see Fig. 1 b). These plateaus stem from

non-gradient variations of nanotwin thickness ( Cheng et al., 2018 ). It should be noted that the yield strength gradients

g s are prescribed for GNT-1 to GNT-4 models, while the hardness gradients g are measured for GNT-1 to GNT-4 samples

in experiments. To compare the experimental and simulation results, we adopt the following protocol to convert g s to g .

That is, for GNT-1 to GNT-4 models, we use the experimental values of wavelength λ, maximum yield strength s 0, max and

minimum yield strength s 0, min ; the latter two are measured from the nanotwinned samples without structural gradient

( Cheng et al., 2018 ). As such, these parameters fix the respective g s for GNT-1 to GNT-4 models. For example, the strength

gradient for GNT-1 is a constant of g GNT −1 
s = 0 . 56 GPa / mm . Cheng et al. ( Cheng et al., 2018 ) showed that the tensile yield

strength of a homogeneous nanotwinned sample with uniform twin thickness is approximately 1/3 times the corresponding

micro-indentation hardness in a GNT sample with the same local twin thickness. Hence, we assume g ≈ 3 g s and thus obtain

g GNT −1 = 1 . 68 GPa / mm . As such, the simulation results of σ 1% versus g s are converted to σ 1% versus g to directly compare

with the corresponding experimental results. 

In addition, we estimate the sample-average yield strength at zero hardness gradient, σ1% ,g=0 , from a rule-of-mixture

average of yield strengths measured from four homogeneous nanotwinned samples without structural gradient, but with

different uniform twin thicknesses ( Cheng et al., 2018 ). Then we calculate the extra strength of the GNT-1 model as 
σ1% =
σ1% − σ1% ,g=0 . The extra strengths 
σ 1% for the GNT-2 to GNT-4 models are calculated by the same definition. To further

characterize the nonlinear functional dependence of σ 1% on g , we conduct additional simulations for 25 GNT models with

increasing g from 0 to 12 GPa/mm by equal increment. The corresponding results of σ 1% versus g are plotted as the blue

curve in Fig. 3 c. By least squares regression analysis of the σ 1% versus g data points for these 25 GNT models, we find that

the simulated extra strength 
σ 1% closely obeys 


σ1% = β
√ 

g (15)

where the coefficient β is fitted as 41 . 7 
√ 

MPa · μm . This nonlinear relation between the extra strength and hardness gra-

dient is reasonably supported by the experimental data (red squares), and it warrants further experimental validation by

more GNT Cu samples with different structural gradients in the future. As to be discussed later, the relation between 
σ 1%

and g in Eq. (15) originates from the hardening effect of plastic strain gradients in GNT Cu. 

Our in-depth analysis of numerical results of GNT-1 to GNT-4 models reveals the primary features in plastically deformed

gradient structures, including progressive yielding, gradient distributions of plastic strain and extra plastic flow resistance.

Consider GNT-1 as an example. Fig. 4 a shows the distributions of plastic flow resistance s ( ̂  y ) along normalized ˆ y (= y/ L y )

at different applied strains ε a zz . The initial linear profile of s ( ̂  y ) at ε a zz = 0 corresponds to Eq. (9) , with the maximum and

minimum yield strength of 446 MPa and 223 MPa, respectively, giving a constant strength gradient g s = 0 . 56 GPa / mm . As

ε a zz increases to 0.25%, the soft region at large ˆ y becomes plastically yielded, while the hard region at small ˆ y remains

elastic. Due to the hardening effects of both plastic strains and plastic strain gradients, s ( ̂  y ) increases in the plastic region

and exhibits a nonlinear profile represented by a black curved segment. In contrast, s ( ̂  y ) remains unchanged in the elastic

region and maintains a linear profile represented by a black straight segment. The location where the black curved and

straight segments meet is the boundary between the elastic and plastic regions. 

Fig. 4 b shows the distribution of plastic strain ε p zz ( ̂  y ) (the black curve) when ε a zz = 0 . 25% . The plastic region with nonzero

ε p zz ( ̂  y ) can be readily identified. A gradient distribution of plastic strain develops within the plastic region, such that ε p zz ( ̂  y )

has the largest value at ˆ y = 1 and decreases to zero at the elastic-plastic boundary. It is interesting to observe that the

plastic strain gradient α( ̂  y ) = | ∂ ε p zz /∂ y | is close to a constant. To understand this result, we note that during the early stage

of progressive yielding, the stress σzz ( ̂  y ) and thus s ( ̂  y ) at ε a zz = 0 . 25% are close to s ( ̂  y , t = 0) . Based on Eq. (13) , a constant

plastic strain gradient in the plastic region can be estimated as 

α
(

ˆ y 
)

≈
∣∣∣∣∂ [ ε a zz − s ( y, t = 0 ) /E ] 

∂y 

∣∣∣∣ = 

g s 

E 
(16)

Eq. (16) indicates that the plastic strain gradient α( ̂  y ) is dictated by the built-in strength gradient g s . But the calculated

α( ̂  y ) from the black curve in Fig. 4 b is only about one third of g s / E . This discrepancy is attributed to the nonlinear hardening

responses at different ˆ y during the process of progressive yielding through sample thickness. 

Fig. 4 c shows the extra plastic flow resistance 
s ( ̂  y ) defined as the difference of s ( ̂  y ) with and without the hardening

effect of plastic strain gradients, the latter of which is evaluated by setting κ = 0 in Eq. (12) . Compared to the initial s ( ̂  y )

at ε a zz = 0 , 
s ( ̂  y ) is substantial, reaching the maximum of about 40 MPa at ε a zz = 0 . 25% . In addition, Fig. 4 d shows the

distribution of axial stress σzz ( ̂  y ) at ε a zz = 0 . 25% . In the elastic region, σzz ( ̂  y ) is constant, reflecting a uniform distribution of
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Fig. 4. Simulation results of the GNT-1 model at different applied tensile strains ε a zz from the 1D gradient theory of plasticity, showing the distributions of 

(a) plastic flow resistance s ( ̂ y ) , (b) plastic strain ε p zz ( ̂ y ) , (c) extra flow resistance 
s ( ̂ y ) , and (d) axial stress σzz ( ̂ y ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tensile elastic strain ε e zz ( ̂  y ) equal to applied tensile strain ε a zz . In the plastic region, the nonlinear profile of σzz ( ̂  y ) closely

matches that of s ( ̂  y ) ; σzz ( ̂  y ) decreases from the elastic-plastic boundary to ˆ y = 1 , due to the increased plastic strain and

decreased elastic strain with increasing ˆ y . 

To reveal the effects of increasing load, Fig. 4 a shows that as ε a zz increases to 0.35%, s ( ̂  y ) further increases in the plastic

region and continues to exhibit a nonlinear profile as a red curved segment; s ( ̂  y ) remains unchanged in the elastic region

and thus maintains a linear profile as a red straight segment. Moreover, the plastic region expands, while the elastic region

shrinks, such that the elastic-plastic boundary moves to smaller ˆ y . This progressive yielding response is also evident in

Fig. 4 b, showing an increased plastic region with a concomitant increase of ε p zz ( ̂  y ) . As a result, the region with the gradient

distribution of plastic strain expands. The plastic strain gradient α( ̂  y ) = | ∂ ε p zz /∂ y | becomes close to g s / E as estimated by

Eq. (16) . Fig. 4 c shows 
s ( ̂  y ) at ε a zz = 0 . 35% . Compared to s ( ̂  y ) at ε a zz = 0 . 25% , the increase of s ( ̂  y ) is primarily caused by the

extra hardening effect of plastic strain gradients. In addition, Fig. 4 d shows that in the shrinking elastic region, the constant

σzz ( ̂  y ) is elevated due to an increase of elastic strain; in the expanding plastic region, the nonlinear distribution of σzz ( ̂  y )

follows that of s ( ̂  y ) at ε a zz = 0 . 35% . 

When ε a zz reaches 0.45%, the progressive yielding process has completed, such that the entire cross section becomes

plastically yielded. Fig. 4 a shows that similar to s ( ̂  y ) at ε a zz = 0 , the distribution of s ( ̂  y ) at ε a zz = 0 . 45% becomes almost linear

again. This arises from the saturation of the extra hardening effect of plastic strain gradients, as to be further discussed

next. Fig. 4 b confirms that the plastic region occupies the entire cross section at ε a zz = 0 . 45% ; the plastic strain gradient

α( ̂  y ) is almost identical to g s / E as estimated by Eq. (16) . Fig. 4 c shows 
s ( ̂  y ) that varies weakly between 55-65 MPa. This


s ( ̂  y ) represents the limit of the extra hardening effect due to the plastic strain gradient in GNT-1. To understand this

limit, we note that Eq. (7) and accordingly Eq. (12) represent a two-stage hardening behavior. Namely, the hardening rate

is dominated by the plastic strain gradient when ε p is less than ɛ 2 ( = 0.0 0 01) and decays quickly as ε p increases above ɛ 2 ,
thereby giving rise to the limit of 
s ( ̂  y ) due to plastic strain gradients. When ε p increases above ɛ 2 at the hardest region

( ̂  y = 0 ), 
s ( ̂  y ) becomes saturated in the entire cross section, resulting in the saturation of the overall extra strength 
σ
 1% 
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from the plastic strain gradient as ε a zz approaches about 0.5% and beyond. Hence, the extra strength 
σ 1% as defined earlier

provides an effective measure of the sample-level extra strength. In addition, during progressive yielding, the limit of 
s ( ̂  y )

at different ˆ y is attained at different ε a zz , but the limit value of 
s ( ̂  y ) depends weakly on ˆ y , resulting in a linear profile of

saturated s ( ̂  y ) . Fig. 4 d shows the nearly linear distribution of σzz ( ̂  y ) at ε a zz = 0 . 45% , which follows the corresponding s ( ̂  y ) . 

Fig. 4 a also shows the representative distribution of s ( ̂  y ) at a high load of ε a zz = 0 . 7% . The overall linear profile (the green

curve) is maintained with slight nonlinearity near ˆ y = 0 . As ε a zz increases from 0.45% to 0.7%, the slight increase of s ( ̂  y )

is primarily caused by the hardening effect of plastic strains instead of plastic strain gradients. This result represents the

saturated distribution of s ( ̂  y ) that prevails under large tensile strains, e.g., in the range of 0.5% ~ 10% covered by the stress-

strain curve in Fig. 2 a. In addition, the distributions of ε p zz ( ̂  y ) and σzz ( ̂  y ) are very close to the corresponding distributions at

ε a zz = 0 . 45% with slight increase, while 
s ( ̂  y ) remains unchanged. Similar to the case of ε a zz = 0 . 45% , the sample average of


s ( ̂  y ) at ε a zz = 0 . 7% also approaches the extra strength 
σ 1% . 

For GNT-2 to GNT-4 models, the corresponding numerical results show that all the half-period profiles of plastic flow

resistance s ( ̂  y ) , tensile plastic strain ε p zz ( ̂  y ) , extra flow resistance 
s ( ̂  y ) and tensile stress σzz ( ̂  y ) show qualitatively similar

trends as GNT-1. However, due to the increasing strength gradient, the plastic strain gradient α( ̂  y ) and extra flow resistance


s ( ̂  y ) become increasingly stronger from GNT-2 to GNT-4, leading to the increasing sample-level yield strength σ 1% and

thus increasing sample-level extra strength 
σ 1% . 

5. Gradient plasticity finite element (GPFE) simulations 

5.1. Method 

To gain a complete understanding of the tensile responses of GNT-1 to GNT-4, we numerically implement the 3D gra-

dient plasticity theory in ABAQUS/Explicit and perform finite element simulations for the 3D models of GNT-1 to GNT-4.

We choose the classical rate-independent plasticity model in ABAQUS/Explicit with the Mises isotropic yield surface and

associated plastic flow rule. Explicit time integration is used to simplify numerical calculations of plastic strain gradients

and associated field variables. That is, the hardening rate relation of Eq. (12) is implemented by writing user subroutines

VUSDFLD and VUHARD ( ABAQUS/Explicit, 2016 ). At the end of each time increment, VUSDFLD is used to calculate the gradi-

ent of equivalent plastic strain within each element with the finite difference method; VUHARD is used to calculate the

hardening response due to both plastic strain and plastic strain gradient; and then the updated plastic flow resistance

s and hardening rate h are passed into ABAQUS/Explicit. The combined use of VUSDFLD and VUHARD provides a rela-

tively simple method for 3D calculations of plastic strain gradients, as opposed to other VUMAT or UEL-based methods in

ABAQUS ( Lele and Anand, 20 08 , 20 09 ). The 3D finite element models of GNT-1 to GNT-4 are constructed in ABAQUS/CAE

( ABAQUS/Explicit, 2016 ). Each GNT model has a thin-slice geometry of 40 0 μm × 40 0 μm × 50 μm (corresponding to the

schematic in Fig. 2 a) and contains 4096 brick elements with full integration (C3D8). Eight integration points in each brick

element facilitate a direct finite-difference calculation of plastic strain gradient within each element via VUSDFLD. To sim-

ulate uniaxial tension, we prescribe the following boundary conditions: the velocity along the z -direction is 0.4 nm/s on

the right side of the x-y surface; the displacement in the z -direction is fixed on the opposite side of the x-y surface; other

surfaces are traction free. For each GNT model, the initial distribution of yield strengths is assigned according to the same

triangle wave profile as the corresponding 1D model in Section 4 . The material parameters listed in Table 1 are also used in

GPFE simulations. 

5.2. Results 

The GPFE simulation results of GNT-1 to GNT-4, including the overall tensile stress-strain curves and the axial stress and

strain distributions in the cross section, agree closely with the corresponding 1D simulation results described in Section 4.2 .

Next, we focus on the GPFE simulation results of stress components neglected in the 1D gradient theory and simulations. 

Consider GNT-1 as an example. We first present the 3D finite element simulation results without considering the extra

hardening effect of plastic strain gradients. These results, as shown in Fig. 5 , are obtained by setting κ = 0 in Eq. (7) . They

serve to validate the simplification used to derive the 1D gradient theory, namely, the stress components other than σzz (x, y )

are negligible. Fig. 5 a shows the contour plot of σzz (x, y ) in the x-y cross section at ε a zz = 0 . 25% . The contour with red

color corresponds to a nearly constant tensile stress σzz (x, y ) associated with elastic deformation, while the contour with

varying colors other than red shows a gradient distribution of σzz (x, y ) resulting from progressive yielding. The elastic-

plastic boundary is located at the transition layer between the red and yellow contours. These results are consistent with

those from the 1D gradient theory, i.e., the black curve in Fig. 4 a. 

Fig. 5 b and 5 c show the contour plots of the shear stress σyx (x, y ) and normal stress σxx (x, y ) at ε a zz = 0 . 25% , respectively.

First of all, it is seen that these stress components are much smaller than the corresponding axial stress σzz (x, y ) ( Fig. 5 a),

thus validating the 1D gradient theory. Moreover, σyx (x, y ) and σxx (x, y ) exhibit non-uniform distributions in both x and

y directions. These non-axial stresses arise due to the gradient structure and associated gradient strength in the GNT-1

model. At any moment of a progressive yielding process, the axial stress σzz and accordingly axial strain ε zz (including both

elastic and plastic components) vary with coordinate y , resulting in the varying lateral contraction ε xx with y , irrespective of

different Poisson’s effects on the elastic and plastic parts of the axial strain. Accommodation of the varying ε xx with y (i.e.,
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Fig. 5. 3D finite element simulation results of the GNT-1 model without accounting for the extra hardening effect of the plastic strain gradient. At the 

applied tensile strain of ε a zz = 0 . 25% , plotted are the distributions of (a) axial stress σzz (x, y ) , (b) lateral shear stress σyx (x, y ) and (c) lateral normal stress 

σxx (x, y ) . (d) Equilibrium analysis of the non-uniform stresses σyx (x, y ) and σxx (x, y ) acting on a rectangle area in the x-y cross section as marked in (b) 

and (c); only stress components relevant to equilibrium in the x -direction are plotted as red arrows. (For interpretation of the references to color in the 

text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maintaining displacement continuity) gives rise to the non-zero shear stress σyx (x, y ) . This further leads to other non-zero

stress components such as σxx (x, y ) , so as to maintain equilibrium along the x -direction. It is interesting to note that while

the axial stress σzz only varies with y , σxx (x, y ) varies with both x and y . This is because σxx (x, y ) must self-equilibrate

within any x-z plane, due to the absence of applied load in the x -direction. The same reasoning is applicable to the cause

of a non-uniform distribution of σyx (x, y ) with both x and y . As an illustration, Fig. 5 d shows the non-uniform σyx (x, y ) and

σxx (x, y ) acting on the sides of a rectangular block (as marked in Fig. 5 b and 5 c), and these non-uniform stresses give a zero

resultant force in the x -direction and thus satisfy the equilibrium condition. 

Next, we present the GPFE simulation results that account for the extra hardening effect of plastic strain gradients by

using the κ value in Table 1 . Fig. 6 a-c show the contour plots of σzz (x, y ) , σyx (x, y ) and σxx (x, y ) in the x-y cross section

of GNT-1 at ε a zz = 0 . 25% . Compared to Fig. 5 a, Fig. 6 a shows that the extra hardening of plastic strain gradients causes an

increase of the minimum axial stress σzz (x, y ) by about 50 MPa. However, compared with Fig. 5 b-c, Fig. 6 b-c show that the

extra hardening does not lead to significant changes of σyx (x, y ) and σxx (x, y ) . As a result, σyx (x, y ) and σxx (x, y ) are still

much lower than σzz (x, y ) when the extra hardening effect is accounted for. In addition, Fig. 6 d shows that the predicted

tensile stress-strain curves are nearly identical between 1D and 3D simulations for GNT-1. Hence, the combined 3D finite

element simulation results in Figs. 5 and 6 quantitatively demonstrate that the axial stress dominates over other stress

components in GNT Cu under uniaxial tension. 

6. Discussion 

6.1. Optimization of gradient structures toward the maximum strength 

Insights from the above gradient plasticity simulations can be applied to optimize the gradient structures and associated

gradient strengths in a GNT-D(esign) model toward achieving the maximum sample-average strength. For the GNT-D model,
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Fig. 6. 3D finite element simulation results of the GNT-1 model accounting for the extra hardening effect of plastic strain gradients. At the applied tensile 

strain of ε a zz = 0 . 25% , plotted are the distributions of (a) axial stress σzz (x, y ) , (b) lateral shear stress σyx (x, y ) , and (c) lateral normal stress σxx (x, y ) . (d) 

Comparison of the tensile stress-strain curves between 1D and 3D simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we consider a family of triangle-wave strength distributions as in Fig. 2 b. Given the initial plastic flow resistance s (y, t = 0)

of the GNT-D model, its sample-average plastic resistance s avg at ε a zz = 1% can be expressed as 

s avg = s + 
s (17)

where s̄ is the rule-of-mixture average of s (y, t = 0) through the cross section and becomes s̄ = ( s 0 , max + s 0 , min ) / 2 for the

triangle wave profile of s (y, t = 0) ; 
s is the sample-average extra flow resistance arising from plastic strain gradients.

In the current rate-independent model, s avg corresponds to the sample-average yield strength σ 1% . According to Fig. 3 b

and Eq. (15) , 
s is approximately represented by 
s = β
√ 

g = βs 
√ 

g s , where g s is the gradient of the initial plastic flow

resistance and given by g s = ( s 0 , max − s 0 , min ) / (λ/ 2) for the triangle wave profile of s (y, t = 0) ; the coefficient βs is given by

βs = 

√ 

g/g s β = 

√ 

3 β = 72 . 2 
√ 

MPa · μm . Thus, Eq. (17) becomes 

s avg = 

s 0 , max + s 0 , min 

2 

+ βs 

√ 

s 0 , max − s 0 , min 

λ/ 2 

(18)

Based on Eq. (18) , s avg can be optimized in the parameter space of { s 0, max , s 0, min , λ} for the GNT-D model. Generally

speaking, certain regions in the parameter space may not be accessible due to constraints from material processing; more-

over, when certain parameters reach their achievable limits, s avg has to be optimized in a reduced parameter space. Three

scenarios of optimization are considered under the aforementioned constraints. First, we note that s avg increases mono-

tonically with increasing s 0, max , when both s 0, min and λ are fixed. This is because both s̄ and 
s increase with s 0, max . For

nanotwinned Cu, reducing twin thickness can raise s 0, max . However, it is difficult to keep reducing twin thickness by a

specific processing method such as electrodeposition ( Cheng et al., 2018 ), so that s avg is limited by the achievable value of
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Fig. 7. Optimization of the average plastic flow resistance s avg by tuning s 0, min and λ, while holding s 0, min fixed. (a) Contour plot of σ 1% ( ≈ s avg ) for GNT-D 

in the parameter space of { s 0, min , λ/2}, when s 0, max is fixed at 446 MPa. (b) σ 1% versus s 0, min curves extracted from (a) for several representative half 

periods λ/2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s 0, max . Second, s avg increases monotonically by reducing λ, when both s 0, min and s 0, max are fixed. In this case, as λ decreases,


s increases, while s̄ remains unchanged. Similarly, it is difficult to keep reducing λ by a specific processing method. 

The third scenario involves a non-monotonic change of s avg , thus requiring a search of the optimal parameter(s). For

example. s avg can be optimized by tuning s 0, min , when s 0, max and λ are fixed. This is because increasing s 0, min raises s̄ , but

lowers 
s due to decreasing g s . These two opposite effects can be optimized to achieve the maximum s avg . As a more gen-

eral example with two tunable parameters, Fig. 7 a shows the contour plot of σ 1% (equal to s avg ) for GNT-D in the parameter

space of { s 0, min , λ/2}, when s 0, max is fixed at 446 MPa, which is the highest local yield strength in the GNT-4 model. Note

that we use the model values of s 0, max and s 0, min instead of the experimental data since statistical variations of the latter

can obscure the trend. It is seen from Fig. 7 a that the maximum σ 1% occurs at the smallest λ/2 and intermediate s 0, min ,

consistent with the earlier discussion. From Fig. 7 a, the σ 1% versus s 0, min curves are extracted for several representative

values of λ/2, as shown in Fig. 7 b. In these curves, σ 1% invariably exceeds s 0, max , which is the strength of the strongest

component of the GNT-D model; moreover, the non-monotonic change of σ 1% with s 0, min becomes more pronounced as

λ/2 is 100 μm or smaller. For λ/ 2 = 50 μm (as in the GNT-4 model), the corresponding peak value of σ 1% is 502 MPa

when s 0 , min = 350 MPa . This optimized strength for the GNT-D model exceeds σ1% = 490 MPa for the GNT-4 model with

s 0 , min = 223 MPa . The above study indicates that the strength of the experimental GNT-4 sample ( Cheng et al., 2018 ) would

become higher if its s 0 , min = 223 MPa were to move to around s 0 , min = 350 MPa . 

6.2. Plastic strain gradient 

An important insight from the 1D gradient plasticity simulation results in Section 4.3 is that the plastic strain gradient

α( ̂  y ) in GNT Cu is dictated by the built-in strength gradient, and it approaches a saturated value of about g s /E = g/ 3 E

throughout the sample cross section once progressive yielding is finished. This insight is further confirmed by Fig. 8 , where

the blue line corresponds to the saturated plastic strain gradient α1% obtained from 25 GNT models with increasing hardness

gradient g between 0 and 12 GPa/mm by equal increment. Also shown in Fig. 8 is the theoretical prediction of α1% = g/ 3 E

(black line). Close agreement between the numerical results and theoretical predictions indicates that despite the extra

strengthening effect of plastic strain gradients, the saturated plastic strain gradient, α1% , is given approximately by g s /E =
g/ 3 E. Based on Eq. (15) , the extra strength 
σ 1% can be expressed in terms of the saturated plastic strain gradient α1% , 


σ1% = γ
√ 

α1% (19) 

where the prefactor γ is β
√ 

3 E . Hence, Eq. (19) reveals a direct functional relation between the extra strength and saturated

plastic strain gradient in GNT Cu. 

According to Ashby ( Ashby, 1970 ), the plastic strain gradient α depends on the density of GNDs ρg by α = ρg b, where

b is the Burgers vector length. Then Eq. (19) can be rewritten as 
σ1% = γ
√ 

ρg , 1% b , where ρg, 1% is ρg at ε a zz = 1% . From

the simulation results of α1% for GNT-1 to GNT-4, we can estimate the corresponding ρg , 1% = α1% /b. Consider GNT-3 as an

example. The corresponding α1% is about 17/m ( Fig. 8 ). When b is taken as 2 × 10 −10 m , ρg, 1% is estimated as about 10 11 /m 

2 .

On the other hand, we can estimate the density of extra GNDs in GNT-3 (compared to the homogeneous nanotwinned

structure without twin gradients) in terms of the bundles of concentrated dislocations (BCD), which are only observed

in GNT samples but not in homogeneous nanotwinned samples with uniform twin thickness ( Cheng et al., 2018 ). From
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Fig. 8. Numerical simulation results of saturated plastic strain gradient α1% at ε a zz = 1% for 25 GNT models with increasing g from 0 to 12 GPa/mm (blue 

curve), as compared with the theoretical prediction from α1% = g/ 3 E (black line). Blue dots correspond to numerical simulation results of GNT-1 to GNT-4. 

(For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the diffraction measurement of lattice misorientation across the BCD, we determine the density of local GNDs. Since the

BCD only occupies a small fraction of grain volume, we further estimate the density of grain-average GNDs via the rule

of mixture and take the result as the density of extra GNDs in GNT-3, which has the same order of magnitude as the

above theoretical estimate of ρg, 1% about 10 11 /m 

2 . Hence, our preliminary study suggests that the extra GNDs arising from

gradient nanotwins can induce the extra strength for GNT Cu. Further in-depth study is underway towards elucidating the

origin of generation of BCDs in GNT samples, as well as the impact of extra GNDs on the extra strength of GNT Cu, through

quantitative characterization of back stresses ( Mughrabi, 2006 ). The combined experimental and modeling results will be

reported in a future paper. 

6.3. Nonlinear strength distribution 

To study the nonlinear distributions of initial plastic flow resistances, we revise the GNT-1 and GNT-4 models by replacing

their triangle wave profiles of s (y, t = 0) with sinusoidal wave profiles, while keeping the corresponding s 0, max , s 0, min and λ
unchanged. As a result, the strength gradient becomes a nonlinear function of coordinate y in each sinusoidal wave profile,

in contrast to a constant magnitude of strength gradient in each triangle wave profile. For example, the initial plastic flow

resistance of the revised GNT-1 model is represented by the half period of a sinusoidal wave 

s (y, t = 0) = s 0 , max − ( s 0 , max − s 0 , min ) sin 

(
π

λ
y 

)
(20)

where the wavelength λ is 2 L y . 

We numerically implement the 1D gradient theory for the revised GNT-1 to GNT-4 models, with the same numerical

procedure as for the triangle wave profiles of s (y, t = 0) . As discussed earlier, special attention should be paid to the finite

difference calculation of the plastic strain gradient. For a nonlinear sinusoidal wave profile, the plastic strain gradient is

initially zero at the end point of a half period, but becomes non-zero with progressive yielding. As a result, the plastic

strain gradient calculated from either side of the end point begins to flip sign as the integration time increases, leading to

an unable, oscillating solution around the end point. We find that the forward or backward difference method can give a

stable, physically-sound numerical solution, similar to the cases of triangle wave profiles. 

The numerical results of the revised GNT-1 to GNT-4 models are close to the corresponding GNT-1 to GNT-4 models with

the triangle wave profiles of s (y, t = 0) . As an example, Fig. 9 shows the cross-sectional distributions of plastic flow resis-

tance s ( ̂  y ) at different applied tensile strains ε a zz for the revised GNT-1 model with s (y, t = 0) given by Eq. (20) . Comparing

with the results in Fig. 4 a, the difference in s ( ̂  y ) at the same ε a zz is small between the linear and nonlinear distributions of
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Fig. 9. Simulation results of the revised GNT-1 model with a sinusoidal wave profile of initial plastic flow resistance from the 1D gradient theory of 

plasticity, showing the cross-sectional distribution of plastic flow resistance s ( ̂ y ) under different applied tensile strains ε a zz . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s (y, t = 0) . Overall, all the results obtained from the triangle wave profiles of s (y, t = 0) are close to those from the nonlinear

sinusoidal wave profiles with identical s 0, max , s 0, min and λ. 

7. Concluding remarks 

We have developed a 3D gradient theory of plasticity by incorporating the strengthening effect of plastic strain gradients

into the classical J 2 flow theory. Numerical simulations based on a simplified 1D gradient theory show the primary effects of

gradient plasticity on GNT Cu under uniaxial tension, including progressive yielding, gradient distributions of plastic strain

and extra flow resistance. We find that the extra strength 
σ 1% depends on the hardness gradient g (equivalent to 3 times

the strength gradient g s ) by Eq. (15) , and the saturated plastic strain gradient, α1% , is approximately given by g s /E = g/ 3 E,

as shown in Fig. 8 . As a result, the extra strength depends on the saturated plastic strain gradient α1% by Eq. (19) . Results

from 3D gradient plasticity finite element simulations confirm 1D numerical results and further reveal 3D distributions of

non-axial stresses despite their negligible role in the overall tensile response of GNT Cu. Predictions of the optimal gradient

structures and associated gradient strength distributions suggest possible routes for achieving the maximum strength by

tuning gradient nanostructures in GNT Cu. Altogether, our work provides an effective lower-order gradient theory of plastic-

ity for gradient structured metals. The simulation results from this theory enable a quantitative understanding of the strain

gradient plasticity effects on the strengthening of materials with gradient structures. 

While the present work has established a direct relationship between the built-in structural gradient and resultant plastic

strain gradient in GNT Cu, future studies are needed to elucidate the mechanistic origin of the extra strength arising from

plastic strain gradients. This requires a combined experimental and modeling effort to address several fundamental ques-

tions, including how GNDs originate from built-in structural gradients and resulting plastic strain gradients, and why BCDs

can uniquely develop in gradient structures, leading to the extra strength in GNT Cu. In addition, it remains to be established

how the strengthening effect arises from plastic strain gradients through a dislocation density based model, and it is also

necessary to explicitly account for the strain gradient effects originating from the internal interfaces of twin boundaries and

grain boundaries and their spacings ( Aifantis et al., 2006 ). We note that the current 3D finite element model, with calibra-

tion and improvement, may predict the tensile failure, i.e., ductility, of GNT samples. To this end, it is necessary to perform

a combined experimental and modeling study of the initiation and growth of plastic strain localization in GNT samples in

the future. Broadly, since GNT Cu represents a unique class of heterogeneous nanostructures with a high tunability of struc-

tural gradients, resolving the above issues may open opportunities of tailoring the structural heterogeneities in a variety of

heterogeneous nanostructured materials ( Ma and Zhu, 2017 ) for achieving outstanding mechanical properties. 
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