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A B S T R A C T   

The Peierls barrier measures the lattice resistance to dislocation glide in crystalline solids. We use 
the nudged elastic band (NEB) method to calculate the Peierls barriers for screw and edge 
dislocation glide in a face-centered cubic (FCC) metal of Ni. The minimum energy paths (MEPs) 
across single or sequential Peierls barriers are determined under shear loading. The NEB results 
show the decreasing Peierls barrier with increasing shear stress, giving the Peierls stress at which 
the Peierls barrier vanishes. The effects of boundary condition and system size on Peierls barriers 
are studied by comparing strain- and stress-controlled NEB results. Furthermore, the free-end NEB 
methods are applied to determine MEPs with improved computational efficiency. The NEB results 
are also used to evaluate the energetic driving force of dislocation glide, which is consistent with 
that determined from the Peach-Koehler force. The accuracy of the present NEB results based on 
an empirical interatomic potential is assessed by comparison with a machine-learning potential. 
This work demonstrates the robust and efficient quantification of Peierls barriers to dislocation 
glide in an FCC metal, and it lays a solid foundation for the atomistic determination of Peierls 
barriers in compositionally complex alloys with the FCC structure in future studies.   

1. Introduction 

Dislocation glide plays an important role in plastic deformation of crystalline solids. The lattice resistance to dislocation glide is 
usually characterized by the Peierls (1940) barrier. Early work by Cottrell (1953), Nabarro (1947), Peierls (1940) estimated the 
dislocation energy per unit length as a function of dislocation position without applied loading, and showed that it oscillates due to the 
periodic structure of the crystal lattice. The maximum energy is termed the Peierls barrier. An applied shear stress on the dislocation 
glide plane serves to reduce the Peierls barrier. The critical resolved shear stress for dislocation glide when the Peierls barrier is 
reduced to zero is called the Peierls stress. Extensive theoretical and experimental estimates have been given for the Peierls barrier and 
Peierls stress in the literature (Nabarro, 1997; Schoeck, 1999; Szelestey et al., 2003). 

Recent studies of dislocation glide resistances in compositionally complex alloys (Ding et al., 2019; George et al., 2020; Li et al., 
2019; Ren et al., 2022) have rekindled interest in the quantitative determination of Peierls barriers in face-centered cubic (FCC) metals 
and alloys. Accurate quantification of the Peierls barriers in unary FCC metals is a necessary first step toward further study of more 
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compositionally complex FCC alloys. Atomistic simulations such as molecular statics and molecular dynamics (MD) have been applied 
to study Peierls barriers in FCC metals (Bulatov et al., 1999; Lu et al., 2000; Shin and Carter, 2013; Wang et al., 2011). However, use of 
molecular statics in energy minimization is only suitable to determine the Peierls stress at which the stress-dependent Peierls barrier 
vanishes. In contrast, MD can be applied to calculate stress-dependent Peierls barriers. However, MD is limited to high dislocation 
velocities due to its timescale limitation (Li et al., 2019). In addition, coarse-grained models are used to evaluate Peierls barriers based 
on the periodic relation of shear stress versus slide displacement across the slip plane (Nabarro, 1997; Schoeck, 1999; Szelestey et al., 
2003). However, atomic bonding interactions at the dislocation core can be overly simplified in those models, affecting the accuracy of 
Peierls barriers. Hence, there is currently a lack of systematic full-atomistic studies of Peierls barriers in FCC metals as a function of 
applied stress (Cai et al., 2004). 

The nudged elastic band (NEB) method (Jonsson et al., 1998; Zhu et al., 2013) enables an effective atomistic determination of the 
Peierls barrier as a function of applied loading. Based on transition state theory (Phillips, 2001; Vineyard, 1957), the rate of dislocation 
glide from a Peierls valley to a neighboring one in a crystal lattice is given by 

v = v0exp
(

−
ΔG(τ, T)

kBT

)

(1)  

where v0 is the trial frequency, ΔG is the activation Gibbs free energy, τ is the applied resolved shear stress on the dislocation slip 
system, T is the temperature, and kB is the Boltzmann constant. Based on harmonic transition state theory (Phillips, 2001; Vineyard, 
1957), the temperature effect on ΔG in Eq. (1) can be incorporated into the prefactor v0. Hence, one can focus on the 
temperature-independent part of ΔG, which is the activation Gibbs free energy at 0 K. This activation energy can be calculated from the 
Gibbs free energy surface of an atomic system at 0 K using the stress-controlled NEB method, and it is referred to as the Peierls barrier in 
this work. Similarly, when the load is applied by a shear strain γ instead of a shear stress τ, ΔG(τ,T) in Eq. (1) should be replaced by the 
activation Helmholtz free energy ΔF(γ,T). Correspondingly, one can focus on the temperature-independent part of ΔF, which is the 
activation Helmholtz free energy at 0 K. This activation energy can be calculated from the Helmholtz free energy surface of an atomic 
system at 0 K using the strain-controlled NEB method, and it is also referred to as the Peierls barrier in this work. 

The NEB method has been used to study the Peierls barriers of dislocation glide in body-centered cubic (Bai and Fan, 2018; 
Narayanan et al., 2014; Rodney and Proville, 2009; Rodney et al., 2017; Wang et al., 2022) and hexagonal close-packed (Wu and 
Curtin, 2015) metals, and some other phenomena like phase transformation in silicon (Ghasemi et al., 2019). However, there are few 
reports on the NEB studies of Peierls barriers in FCC metals in the literature (Rodney and Proville, 2009; Shin and Carter, 2013). This is 
largely because these Peierls barriers are usually low and the corresponding NEB calculation requires some attention to delicate control 
of dislocation structure and applied loading (Chen et al., 2019; Zhang et al., 2022). 

In this work, we achieve the robust and efficient application of the NEB method for calculating the Peierls barriers in a repre-
sentative FCC single crystal of Ni. We apply both the strain-controlled and stress-controlled NEB methods to reveal the effects of 
boundary condition and system size. We also apply the stress-controlled free-end NEB method (Zhu et al., 2007, 2008) for improving 
computational efficiency. Furthermore, we use the Peach-Koehler force (Peach and Koehler, 1950) to validate the atomistically 
calculated energy decrease for a dislocation moving from a Peierls valley to a neighboring one under an applied shear stress. All the 
NEB calculations are performed using LAMMPS (Thompson et al., 2022), and a representative script for the stress-controlled NEB 
calculation can be obtained by contacting the corresponding author of this paper to facilitate the verification and extension of our 
results by other research groups. This work lays a solid foundation for the atomistic determination of Peierls barriers in 

Fig. 1. NEB simulation setup of a ½[110](111) screw dislocation. (a) An FCC Ni slab containing a screw dislocation. Atoms in the perfect FCC 
structure are removed for displaying atoms at the dislocation core and surface. (b) Contour of shear strain εyz in the slab. All the atomic config-
urations in this paper are displayed using the atomic structure visualization tool OVITO (Stukowski, 2010). 
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compositionally complex alloys with the FCC structure in the future. 

2. Peierls barrier of screw dislocation glide without applied loading 

The NEB method is an efficient chain-of-states approach for finding the minimum energy path (MEP) between a given initial and 
final state of a transition on the potential energy surface of an all-atom system (Jonsson et al., 1998; Zhu et al., 2013). The initial and 
final states are two local minima on the potential energy surface. In a conventional NEB calculation, the initial and final states are first 
obtained by the conjugate gradient method for energy minimization. Then a set of images (termed replicas) along an initial elastic band 
is constructed between the initial and final states. The elastic band is relaxed to obtain an MEP and associated saddle point(s) between 
the initial and final states. When a single saddle point is obtained along an MEP, the energy barrier is the energy difference between the 
saddle-point and initial states. When multiple saddle points are obtained, the energy barrier associated with a saddle point is the 
energy difference between the saddle point and the proceeding local minimum along the MEP. 

To calculate the energy barrier, i.e., Peierls barrier, of glide of a ½[110](111) screw dislocation in Ni, we set up a rectangular FCC Ni 
slab in a supercell, as shown in Fig. 1a. The slab has the size of 40 × 40 × 2 nm in the x//[112], y//[111], and z//[110] directions, 
respectively. We use a small slab thickness along the z-direction to study the two-dimensional mode of dislocation glide. Namely, the 
dislocation line in each replica along the MEP remains straight, such that the Peierls barrier is given as eV per unit length along the z 
direction. For each NEB calculation without applied loading, the top and bottom y-surfaces of the slab are traction free, while periodic 
boundary conditions are imposed along the x and z directions. The embedded atom method (EAM) potential by Angelo et al. (1995) is 
used to represent the interatomic interaction between Ni atoms. A straight screw dislocation line is embedded into the middle of the 
slab by first imposing a displacement field to all atoms according to the elastic solution of a screw dislocation and then relaxing the slab 
with the conjugate gradient method for energy minimization. The resulting atomic configuration in Fig. 1a corresponds to a local 
energy minimum state, and it contains a single screw dislocation that dissociates into two Shockley partials with a stacking fault ribbon 

Fig. 2. NEB results of screw dislocation glide without applied loading. Atomic configuration of (a) the initial state and (b) final state from the NEB 
calculation of screw dislocation glide across a single Peierls barrier. Common neighbor analysis by OVITO is used to color atoms: green atoms 
indicate the FCC structure, while red and white atoms indicate the dislocation core. The blue dashed lines indicate the glide displacement of the 
dislocation core from the initial to final state. (c) MEP of screw dislocation glide from (a) to (b). Circles represent energies of replicas. The energies of 
(a) and (b) are indicated by cyan circles, respectively. (d) Atomic configuration of the saddle-point state along the MEP. The corresponding energy is 
indicated by a magenta circle in (c). Atomic configuration of (e) the initial state and (f) final state from the NEB calculation of screw glide across two 
sequential Peierls barriers. (g) MEP of screw dislocation glide from (e) to (f). 

Y. Si et al.                                                                                                                                                                                                               



Journal of the Mechanics and Physics of Solids 178 (2023) 105359

4

in between. Fig. 1b shows the contour of atomic strain εyz associated with the screw dislocation in Fig. 1a. 
We first use the NEB method to calculate the Peierls barrier of screw dislocation glide without loading. The atomic configuration in 

Fig. 1a is used as the initial state. The magnified dislocation core structure is displayed in Fig 2a. To obtain the final state, we embed a 
screw dislocation at a position with a quantized glide displacement of 2.16 Å relative to the initial state, as dictated by lattice peri-
odicity along the x//[112] direction. The magnified dislocation core structure of the final state is displayed in Fig. 2b. The blue dashed 
lines through Fig. 2a and b indicate the quantized glide displacement of the dislocation core from the initial to the final state. A set of 
sixteen replicas along the initial elastic band is constructed by linear interpolation of atomic positions between the initial and final 
states. The MEP is converged when the total energy is less than 1 × 10− 12 eV for each replica during the NEB calculation. 

Fig. 2c shows the MEP of screw dislocation glide across a single Peierls barrier without loading. The energy of the initial state is 
taken as zero. The reaction coordinate is defined as the normalized path length along the MEP. It represents concerted displacements of 
all atoms as the screw dislocation glides from the initial to final state, and can be considered approximately as a net glide displacement 
of the dislocation core from Fig. 2a to b. As discussed earlier, the dislocation line in each replica along the MEP remains straight along 
the z//[110] direction. Hence, the energy along all the MEPs in this work is expressed as the energy per unit dislocation length. Fig. 2c 
shows that the initial and final states have the same energy, as dictated by the translation invariance of dislocation structure in the 
periodic lattice without applied loading. The maximum, i.e., saddle point, appears in the middle of the MEP, as dictated by the 
translation invariance as well. The corresponding maximum energy per unit length gives the Peierls barrier of 0.0021 eV/nm without 
applied loading. Fig. 2d shows the magnified dislocation core structure of the saddle-point state, which exhibits as a right-tilted 
parallelogram in contrast with a left-tilted parallelogram in the initial and final states (Fig. 2a and b). 

We obtain a longer MEP of screw dislocation glide across two sequential Peierls barriers. The initial and final states along this MEP 
are shown in Fig. 2e and 2f, respectively. Fig. 2g shows the corresponding MEP. As the reaction coordinate is normalized by the path 
length across a single Peierls barrier, the entire MEP is two times longer than that in Fig. 2c. The two MEP segments associated with two 
sequential Peierls barriers replicate each other, giving identical Peierls barriers. This result provides direct demonstration of the 
oscillating dislocation energy in a periodic lattice structure without applied loading. 

3. Peierls barrier of screw dislocation glide under shear loading 

3.1. ε− NEB results 

The strain-controlled NEB (denoted as ε− NEB) method is used to calculate the Peierls barrier of screw dislocation glide under 
applied loading. For each ε− NEB calculation, it is necessary to apply the same strain for all replicas along the MEP. To obtain the initial 
state under an applied shear strain, we use the initial state without applied loading as the starting structure, and apply an anti-plane 
shear strain by imposing an anti-plane displacement to all atoms in the top three layers of the slab, while fixing all atoms in the bottom 
three layers. The rest of the slab is relaxed by the conjugate gradient method for energy minimization, giving the initial state under an 
applied shear strain. The same procedure is applied to obtain the final state under the same applied shear strain. Then a set of replicas 
along an initial elastic band is constructed by linear interpolation of atomic positions between the initial and final states, such that all 
the intermediate replicas have the same boundary displacement as the initial and final states. As the elastic band is relaxed by the 

Fig. 3. ε− NEB results showing the MEPs of screw dislocation glide across a single Peierls barrier under three different applied shear strains.  
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ε− NEB method, boundary atoms in all the replicas are fixed. As such, the same applied shear strain is maintained until a converged 
MEP is obtained. 

Fig. 3 shows the MEPs of screw dislocation glide across a single Peierls barrier under different applied shear strains. Under a low 
shear strain of 3.8 × 10-5, the MEP (red curve) is slightly tilted forward, such that the final state has a lower energy than the initial state. 
The energy of the saddle-point state, i.e., Peierls barrier, is 0.0018 eV/nm, which is a little lower than the Peierls barrier of 0.0021 eV/ 
nm without applied loading. The green and blue curves in Fig. 3 show that the MEP is increasingly tilted as the applied shear strain 
rises. Correspondingly, both the Peierls barrier and the energy of the final state decrease with increasing shear strain. 

The ε− NEB method is also used to determine the MEPs of screw dislocation glide across two sequential Peierls barriers under 
applied loading. We adopt the same initial state as the NEB calculation for a single Peierls barrier and obtain a new final state where the 
screw dislocation is moved with a quantized displacement of 4.31 ̊A relative to the initial state. Fig. 4a shows the corresponding MEPs 
under different applied shear strains. Fig. 4b–f show the atomic structures in the dislocation core region at local minima and maxima 
along a representative MEP under an applied shear strain of 7.2 × 10-5 (blue curve in Fig. 4a). The entire MEP consists of two MEP 
segments, each of which is associated with a Peierls barrier. Incidentally, the first MEP segment is identical to the MEP under the same 
applied shear strain in Fig. 3. It is seen from Fig. 4a that after the dislocation glides across the first Peierls barrier, the system reaches an 
intermediate local minimum, which has a lower energy than the initial state. As the dislocation at such a metastable state further glides 
across the second Peierls barrier to reach the final state, a lower energy is achieved compared to the intermediate local minimum. Since 
the screw dislocation glides in the slab under a fixed applied shear strain, the plastic shear strain increases and correspondingly the 
elastic shear strain decreases, thus lowering the shear stress in the slab. As a result, the second MEP segment is subjected to lower shear 
stresses compared to the first segment, leading to the increased Peierls barrier from the first to the second MEP segment. For example, 
under an applied shear strain of 7.2 × 10-5, the second MEP segment gives a higher Peierls barrier of 0.00178 eV/nm than 0.00138 eV/ 
nm from the first MEP segment. These results demonstrate that the Peierls barrier from the ε− NEB calculation is affected by pro-
gressive stress relaxation along the MEP. As the system size increases, the stress relaxation effect can become less pronounced. 
However, when the NEB method is combined with energy calculations based on a computationally intensive quantum mechanical 
method (Shin and Carter, 2013) or machine-learning potential (MLP) (Mishin, 2021), the model size is usually small. Hence, the Peierls 
barrier from the ε− NEB calculation should appropriately account for the effect of the system size (see Section 3.3). 

3.2. σ− NEB results 

The stress-controlled NEB (denoted as σ− NEB) method is used to determine the Peierls barriers of screw dislocation glide under 
applied loading, which are then compared with the corresponding ε− NEB results. To implement the σ− NEB method in LAMMPS, a 
fixed force fz is applied to each atom in the top three layers of the slab, while an opposite force − fz is applied to each atom in the bottom 
three layers. Meanwhile, fx and fy are kept zero in the boundary layers. The corresponding shear stress is given by τyz = (N × fz) /(Lx ×

Lz), where N is the number of atoms in the top/bottom boundary layer, Lx and Lz are the lengths of the supercell in the x- and z- 
direction, respectively, and they are kept unchanged during NEB relaxation. This σ− NEB method is different from other stress- 
controlled NEB methods in the literature (Ghasemi et al., 2019; Huang et al., 2009). For example, all the stress components acting 

Fig. 4. ε− NEB results of screw dislocation glide across two sequential Peierls barriers under applied loading. (a) MEPs of screw dislocation glide 
under three different applied shear strains. (b)-(f) Atomic configurations of local minima and saddle points along the MEP under a shear strain of 7.2 
× 10− 5, and the corresponding energies are indicated by cyan and magenta circles on the blue curve in (a), respectively. 
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Fig. 5. σ− NEB results of screw dislocation glide across two sequential Peierls barriers under applied loading. (a) MEPs of screw dislocation glide under three different applied shear stresses. (b)–(f) 
Atomic configurations of local minima and saddle points along the MEP under a shear stress of 2.7 MPa, and the corresponding energies are indicated respectively by cyan and magenta circles on the red 
curve in (a). 
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on a supercell can be controlled during NEB relaxation, thus facilitating the study of phase transformation due to the change of 
supercell geometry (Ghasemi et al., 2019). 

Fig. 5a shows the MEPs of screw dislocation glide across two sequential Peierls barriers under different applied shear stresses. 
Fig. 5b–f display the atomic structures in the dislocation core region at a series of local minima and maxima along a representative MEP 
under an applied shear stress of 2.7 MPa (red curve in Fig. 5a). The entire MEP consists of two MEP segments, each of which is 
associated with a Peierls barrier. Since the applied shear stress is constant along the MEP, the two MEP segments exhibit almost 
identical profiles when the energy of the respective initial state is offset to zero. Hence, the two MEP segments give nearly equal Peierls 
barriers as well as equal energy decreases from the respective initial to final state. For example, under an applied shear stress of 2.7 
MPa, the first and second Peierls barriers are 0.00175 eV/nm and 0.0017 eV/nm, respectively; the energy decreases by 0.00085 and 
0.0009 eV/nm from the initial to final state for the respective MEP segment. 

To compare the ε− NEB and σ− NEB methods under the same load, we need to convert a shear stress applied to the σ− NEB 
calculation to an equivalent shear strain applied to the comparative ε− NEB calculation. To this end, we use the shear modulus of the 
slab of 63 GPa to convert a shear stress to a shear strain, apply this shear strain to the initial state of the ε− NEB calculation, and further 
adjust it to achieve the target shear stress (as verified from the LAMMPS output). In Fig. 6, we compare the ε− NEB and σ− NEB results 
in terms of their MEP curves of screw dislocation glide across two sequential Peierls barriers under an applied shear stress of 2.7 MPa. 
The first MEP segments from the two methods overlap closely with each other, giving almost identical Peierls barriers. However, the 
second MEP segments are markedly different, giving significantly different Peierls barriers. This difference arises mainly due to the 
aforementioned stress relaxation effect along the MEP in the ε− NEB calculation. That is, as the screw dislocation glides along the MEP, 
the applied shear stress is maintained at 2.7 MPa in the σ− NEB calculation, such that the Peierls barriers are identical across the two 
MEP segments in Fig. 6. In contrast, the shear stress progressively decreases along the MEP in the ε− NEB calculation. The stress 
decrease is relatively small along the first MEP segment, such that the first Peierls barriers from the ε− NEB and σ− NEB calculations are 
very close. However, the stress decrease with ε− NEB becomes more substantial along the second MEP segment relative to the applied 
shear stress at the initial state of the entire MEP. As a result, the second Peierls barrier from the ε− NEB calculation becomes markedly 
higher than that from the σ− NEB calculation. This comparison indicates that under a prescribed shear stress, the σ− NEB method gives 
almost constant Peierls barriers across sequential MEP segments, whereas the ε− NEB method yields increasing Peierls barriers across 
sequential MEP segments. Nonetheless, the ε− NEB method can be used to obtain an approximate estimate of the Peierls barrier from 
the first MEP segment when the system is sufficiently large (see Section 3.3). 

3.3. Size effect 

Compared to the ε-NEB method, a major advantage of the σ− NEB method is that the Peierls barrier is almost independent of the 
system size, so that a small system can be used to save computational cost. For example, Fig. 7a shows the nearly identical σ− NEB 
results of screw dislocation glide across a Peierls barrier in two systems with the respective in-plane slab sizes of 40 × 40 nm and 20 ×

Fig. 6. Comparison between the ε− NEB and σ− NEB methods in terms of the respective MEP of screw dislocation glide across two sequential Peierls 
barriers under an applied shear stress of 2.7 MPa. 
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22 nm under an applied shear stress of 2.7 MPa. In contrast, Fig. 7b presents the corresponding ε-NEB results in the two systems, which 
exhibit a strong dependence on the system size, particularly when the system is small. 

The different size effects between the σ− NEB and ε-NEB methods can be understood as follows. In the σ− NEB calculation, we move 
a dislocation from a Peierls valley (i.e., the initial state) to the neighboring one (i.e., the final state). Correspondingly, both the 
displacement and stress fields of this dislocation are translated. As a result, the structures of the initial and final states maintain the 
translation invariance, such that the minimum energy path and associated energy barrier are almost insensitive to the system size (as 
shown in Fig. 7a). In contrast, as we move the dislocation in the strain-controlled NEB calculation, the atom positions in the top and 
boundary layers in the final state are the same as the initial state. The constraining effect of the fixed boundary layers causes a change 
of stress distribution around the moved dislocation in the final state. This constraining effect increases with decreasing system size. 
Therefore, the minimum energy path and associated energy barrier are more sensitive to the system size (as shown in Fig. 7b). Hence, 
the σ− NEB method is better suited for the atomistic determination of Peierls barriers when energy calculations rely on a computa-
tionally intensive quantum mechanical method (Shin and Carter, 2013) or MLP (Mishin, 2021), for example. 

3.4. Peierls stress 

The Peierls stress is the critical resolved shear stress corresponding to the vanishing Peierls barrier, leading to instantaneous 
dislocation glide without the aid of thermal fluctuations. To determine the Peierls stress of screw dislocation glide, we use the σ− NEB 
method to calculate the Peierls barriers for a wide range of applied shear stresses, with the same simulation setup as those for the first 
MEP segment in Fig. 5a. Fig. 8 shows the σ− NEB results of decreasing Peierls barriers (blue circles) with increasing shear stress. These 
data points are fitted by a nonlinear function (Zhu et al., 2008) 

Q(τ) = A
(

1 −
τ

τath

)α

(2)  

where Q is the Peierls barrier, τ is the applied shear stress, τath is the Peierls stress (i.e., the intercept with the stress axis), A is the energy 
barrier at τ = 0, and α is the nonlinear profiling parameter. The least squares fitting gives τath= 21 MPa, α = 1.6, and A = 0.0021 eV/ 
nm, the last of which matches the direct NEB result without applied loading in Section 2. 

3.5. Free-end ε− NEB and σ− NEB results 

The free-end NEB method (Zhu et al., 2007, 2008) has been previously developed to enable the efficient determination of a long 
MEP that is highly tilted by loading. Compared to the conventional NEB method, the final state for the free-end NEB method is not 
required to be a local minimum, and it is allowed to freely move at a prescribed energy level as the elastic band is relaxed. As a result, a 
short elastic band can be used to improve the computational efficiency. In this work, we use the free-end ε− NEB and σ− NEB methods 
to determine the MEP of screw dislocation glide through LAMMPS. For example, Fig. 9a shows the fixed-end ε− NEB result of an MEP of 
screw dislocation glide under a high shear strain of 7.2 × 10-5 (corresponding to a shear stress of 5.2 MPa). In this calculation, the MEP 
connects the initial and final states of local energy minimum, and 24 replicas (circles) are used to represent the entire MEP. Since the 
MEP is highly tilted by applied loading, the saddle-point state becomes close to the initial state. To capture such a saddle-point state, it 

Fig. 7. Sample size effects on NEB results. (a) Comparison of σ− NEB results of screw dislocation glide across two sequential Peierls barriers under 
an applied shear stress of 2.7 MPa for a larger slab of 40 × 40 nm and a smaller one of 20 × 22 nm, respectively. (b) Same as (a) except for 
comparison of ε− NEB results. 
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is not necessary to map out the whole elastic band beyond the saddle-point state. Hence, we choose a replica (marked by the blue dot in 
Fig. 9a) that is beyond the saddle point and has an energy close to the initial state, and use this replica as the initial free-end state. In the 
free-end ε− NEB calculation, 16 replicas are used to represent the elastic band and the free-end state is kept at the same energy level as 
the initial state. Fig. 9b shows the MEP between the initial and free-end states with less replicas but a similar replica density compared 
to the MEP from the fixed-end NEB result in Fig. 9a. It is seen that the saddle-point state and associated energy barrier closely match 
those from the fixed-end ε− NEB calculation. 

Similarly, Fig. 9c shows the fixed-end σ− NEB result of an MEP of screw dislocation glide under a high shear stress of 5.2 MPa. In this 
calculation, the MEP connects the initial and final states of local energy minimum, and 24 replicas (circles) are used to represent the 
entire MEP. In the free-end σ− NEB calculation, we choose a replica (marked by the blue dot in Fig. 9c) that is beyond the saddle point 
and has an energy close to the initial state, and use this replica as the initial free-end state. In the free-end σ− NEB calculation, 16 
replicas are used to represent the elastic band and the free-end state is kept at same energy level as the initial state. Fig. 9d shows the 
MEP between the initial and free-end states. The saddle-point state and associated energy barrier closely match those from the fixed- 
end σ− NEB calculation. The above results demonstrate the efficiency of the free-end ε− NEB and free-end σ− NEB methods relative to 
their fixed-end counterparts. 

4. Peierls barrier of edge dislocation glide 

We use the σ− NEB method to determine the Peierls barriers of edge dislocation glide, which are compared with those of screw 
dislocation glide. We employ the setup similar to that for the σ− NEB calculation of screw dislocation glide, except that the slab is 
oriented in the x//[110], y//[111], and z//[112] directions and subjected to an applied in-plane shear stress. To embed an edge 
dislocation in the slab, atoms in an upper half (110) plane (parallel to y-z plane) are removed and then the slab is relaxed by the 
conjugate gradient method for energy minimization. The resulting local energy minimum is taken as the initial state. Similarly, the 
final state is obtained by removing atoms in a neighboring half (110) plane. 

Fig. 10a shows the MEP of edge dislocation glide across a Peierls barrier without applied loading. Fig. 10b–d displays the atomic 
structure in the dislocation core region at the initial, saddle point and final states along the MEP, respectively. It is seen from Fig. 10a 
that the Peierls barrier without applied loading is 0.000055 eV/nm, which is much lower than the Peierls barrier of 0.0021 eV/nm for 
screw dislocation glide without applied loading. This result indicates that the edge dislocation is more mobile than the screw dislo-
cation in pure Ni, which is consistent with a general trend from experiments regarding the higher mobility of edge than screw dis-
locations in FCC metals (Adams and Cottrell, 1955) in the thermally-assisted flow regime. 

To study the loading effect on edge dislocation glide, we use the σ− NEB method to determine the MEPs across two sequential 
Peierls barriers under different shear stresses. As shown in Fig. 11, the higher the applied shear stress, the more the MEP is tilted. Since 
the applied shear stress is constant along each MEP, the two MEP segments give nearly equal Peierls barriers as well as equal energy 
decreases from the respective initial to final state. These results are similar to the stress effect on the MEPs for screw dislocation glide in 
Fig. 5a. Note that these shear stresses, however, are very low compared to those for the case of a screw dislocation, consistent with the 
relative reduction of the Peierls barrier for the edge dislocation relative to the screw dislocation. 

Fig. 8. Peierls barrier versus resolved shear stress from σ− NEB calculations of screw dislocation glide across a Peierls barrier. Blue circles represent 
calculated Peierls barriers at different shear stresses, and the red solid line is the fitting curve according to Eq. (2). 
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5. Discussion 

5.1. Peach-Koehler force 

The Peach-Koehler force represents the energetic force exerted on a dislocation under an applied shear stress on the slip plane, and 
it is widely used as the driving force on dislocation motion. The general formula of the Peach-Koehler force has been derived for a 
three-dimensional dislocation loop (Peach and Koehler, 1950). Here we consider the application of this formula to a straight dislo-
cation segment, such that the Peach-Koehler force per unit length takes a simple analytic form of τ ⋅ b, where τ is the revolved shear 
stress and b is the magnitude of the Burgers vector. The Peach-Koehler force is used to validate the atomistically calculated energy 

Fig. 9. Free-end NEB results for screw dislocation glide under high shear loading. (a) A fixed-end ε− NEB result showing the MEP of screw 
dislocation glide across a single Peierls barrier under a shear strain of 7.2 × 10-5 (corresponding to a shear stress of 5.2 MPa). (b) Same as (a) except 
that the free-end ε− NEB method is used. (c) A fixed-end σ− NEB result showing the MEP of screw dislocation glide across a single Peierls barrier 
under a shear stress of 5.2 MPa. (d) Same as (c) except that the free-end σ− NEB method. 
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decrease ΔE from the initial to final state on an MEP of screw dislocation glide under an applied shear stress τ. In the corresponding 
NEB calculation, we denote L as the length of the dislocation segment and Δx as the dislocation displacement from the initial to final 
state. Then the atomistically calculated ΔE should satisfy the relation of ΔE = τ ⋅ b ⋅ Δx ⋅ L, where the right-hand side term is the work 
done by the Peach-Koehler force upon a dislocation displacement of Δx. 

Fig. 12 shows the σ− NEB result of an MEP of screw dislocation glide across four sequential Peierls barriers. Correspondingly, Δx 
should be four times the unit glide displacement between Fig. 2a and b. From the MEP in Fig. 12, we obtain the energy decrease ΔE 
from the initial to final state as 0.00358 eV/nm. On the other hand, we calculate the corresponding energy decrease as τ ⋅ b ⋅ Δx ⋅ L =
0.00358 eV/nm, with τ = 2.7 MPa, b = 2.49 Å, Δx = 8.62 Å and L = 1 nm (normalized as the unit dislocation length). The iden-
tical values of energy decrease between the two results provide direct validation of the atomistically calculated energy decrease ΔE 
from the initial and final state on an MEP of screw dislocation glide under the applied shear stress τ.  We note that the Peach-Koehler 

Fig. 10. σ− NEB result of edge dislocation glide without applied loading. (a) MEP of edge dislocation glide across a single Peierls barrier without 
applied loading. Atomic configurations of (b) initial, (c) saddle-point and (d) final states along the MEP, and their corresponding energies are 
indicated as cyan, magenta and cyan circles in (a), respectively. 

Fig. 11. σ− NEB results showing the MEPs of edge dislocation glide across two sequential Peierls barriers under three different applied 
shear stresses. 
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Fig. 12. σ− NEB result showing the MEP of screw dislocation glide across four sequential Peierls barriers under an applied shear stress of 2.7 MPa. 
ΔE is energy decrease from the initial to final states along the MEP. The Peach-Koehler force corresponds to the slope of the envelope curve (blue 
dashed line) connecting local minima along the MEP. 

Table 1 
FCC Ni mechanical properties predicted with DFT and MLP.  

Property DFT MLP 

C11 (GPa) 267 244 
C12 (GPa) 155 155 
C44 (GPa) 139 126 
Bulk modulus (GPa) 193 184 
Shear modulus (GPa) 96 83 
Poisson’s ratio 0.29 0.30 
Stacking fault energy (mJ/m2) 127 138  

Fig. 13. Comparison of NEB results between EAM Ni and MLP Ni potentials. (a) MEPs of screw dislocation glide across a Peierls barrier. (b) Same as 
(a) except for edge dislocation glide. 
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force is the energetic force representing the rate of energy decrease as the dislocation moves from the initial to final state of local 
energy minimum. Hence, the Peach-Koehler force corresponds to the slope of the envelope curve (blue dashed line) connecting local 
minima along the MEP of dislocation glide in Fig. 12. 

5.2. Peierls barrier from MLP 

MLPs can predict the energy and atomic force with high accuracy close to quantum mechanical methods while enabling orders of 
magnitude faster atomistic simulations (Mishin, 2021). A pure-Ni MLP belonging to the class of spectral neighbor analysis potential 
(SNAP) (Thompson et al., 2015) was developed by Materials Design Inc. and Naval Nuclear Laboratory. A large data set from 
first-principles density functional theory (DFT) calculations was used to train the MLP, which includes but is not limited to 
self-interstitial energy, vacancy energy, elastic constants, and stacking fault energy. The MLP reproduces DFT energy of Ni with 
generally less than 0.004 eV/atom for all structures in the training set. Table 1 compares mechanical properties from the SNAP and DFT 
calculations of FCC Ni. 

Here, we use the MLP Ni to calculate the Peierls barriers of screw and edge dislocation glide in Ni, which are compared with the 
results based on the EAM potential of Ni (denoted as EAM Ni) used in this work (Angelo et al., 1995). Fig. 13a shows the MEPs of screw 
dislocation glide across a single Peierls barrier from the two potentials. The Peierls energy barrier is 0.002 eV/nm from EAM Ni and 
0.0026 eV/nm from MLP Ni, respectively. In addition, Fig. 13b shows the MEPs of edge dislocation glide across a single Peierls barrier 
from the two potentials. The Peierls barrier is 0.00006 eV/nm from EAM Ni and 0.00009 eV/nm from MLP Ni. These results indicate 
that EAM Ni and MLP Ni give close Peierls barriers, thus lending support to the accuracy of the NEB results based on EAM Ni. 

6. Conclusions 

We have performed NEB calculations of the Peierls barriers of screw and edge dislocation glide in FCC Ni. The MEPs and associated 
Peierls barriers are determined for different applied loads, boundary conditions and system sizes. The main results are summarized as 
follows.  

• In the absence of applied loading, the Peierls barriers are shown to be low for both screw and edge dislocations in FCC Ni, but the 
screw type has a higher Peierls barrier than the edge type.  

• Both the strain- and stress-controlled NEB methods are used to determine Peierls barriers across sequential Peierls barriers under 
applied shear stress, showing the decreased Peierls barrier with increasing applied shear stress. The two methods give close values 
of the first Peierls barrier when the system is sufficiently large. However, due to stress relaxation with dislocation glide in the strain- 
controlled NEB calculation, the sequential Peierls barriers are not constant in this case. In contrast, the stress-controlled NEB 
calculation gives constant Peierls barriers for different system sizes as well as across sequential Peierls barriers. These results 
demonstrate that the stress-controlled NEB method enables an efficient atomistic determination of Peierls barriers of screw and 
edge dislocation glide using small samples for FCC crystals. Hence, the stress-controlled NEB method is better suited for the 
atomistic determination of Peierls barriers when energy calculations rely on a computationally intensive quantum mechanical 
method or MLP.  

• The stress-controlled NEB method is used to accurately determine the Peierls stress by fitting the Peierls barriers to a nonlinear 
function under a broad range of applied shear stresses.  

• The strain- and stress-controlled free-end NEB methods are shown to be more computationally efficient than the fixed-end NEB 
methods, particularly when dealing with long MEPs tilted by high loads.  

• The Peach-Koehler force is used to validate the atomistically calculated energy decrease from the initial to final states on an MEP of 
dislocation glide under an applied shear stress. This result also demonstrates the atomistic manifestation of the Peach-Koehler force 
as the energetic force driving dislocation motion, which corresponds to the slope of the envelope curve connecting local minima 
along the MEP of dislocation glide.  

• The MLP-based NEB results of the Peierls barriers for screw and edge dislocations in Ni indicate the accuracy of the EAM-based NEB 
results in this work. 

Altogether, our work demonstrates the robust and efficient quantification of Peierls barriers to dislocation glide in a representative 
FCC metal, and it lays a solid foundation for the atomistic determination of Peierls barriers in compositionally complex alloys with the 
FCC structure in the future. 
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