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Abstract
Additively manufactured (AM) metallic materials often comprise as-printed
dislocation cells inside grains. These dislocation cells can give rise to substantial
microscale internal stresses in both initial undeformed and plastically deformed
samples, thereby affecting the mechanical properties of AM metallic materials.
Here we develop models of microscale internal stresses in AM stainless steel
by focusing on their back stress components. Three sources of microscale back
stresses are considered, including the printing and deformation-induced back
stresses associated with as-printed dislocation cells as well as the deformation-
induced back stresses associated with grain boundaries. We use a three-
dimensional discrete dislocation dynamics model to demonstrate the manifes-
tation of printing-induced back stresses. We adopt a dislocation pile-up model
to evaluate the deformation-induced back stresses associated with as-printed
dislocation cells. The extracted back stress relation from the pile-up model is
incorporated into a crystal plasticity (CP) model that accounts for the other
two sources of back stresses as well. The CP finite element simulation results
agree with the experimentally measured tension–compression asymmetry and
macroscopic back stress, the latter of which represents the effective resultant
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of microscale back stresses of different origins. Our results provide an in-depth
understanding of the origins and evolution of microscale internal stresses in AM
metallic materials.

Keywords: additive manufacturing, internal stresses, crystal plasticity

(Some figures may appear in colour only in the online journal)

1. Introduction

Additively manufactured (AM) alloys often exhibit unconventional microstructures compared
to their counterparts produced by traditional metallurgical routes [1–3]. For example, the
extreme processing conditions of additive manufacturing by laser powder bed fusion (LPBF)
lead to large temperature gradients and rapid cooling that can result in highly non-equilibrium
microstructures such as solidification cells inside grains [2, 4]. The chemical composition in
cell walls is different from that in cell interiors. Sometimes cell walls are decorated with oxide
nanoprecipitates. As a result, the cell walls can trap dislocations and serve as a scaffold to form
‘as-printed dislocation cells’ [5, 6]. Similar as-printed dislocation structures are also observed
in AM metals [7, 8] and alloys without chemical cells [9]. These as-printed dislocation cells and
structures hinder dislocation glide during plastic deformation, thereby affecting the mechanical
properties of AM metallic materials [9, 10].

The mechanics of as-printed dislocation structures has been studied in terms of microscale
internal stresses [9], which refer to the microscopically inhomogeneous stress distribution
inside a material. The internal stress is sometimes called the residual stress in the literature
[11]. Here we use the term ‘internal stress’ instead of ‘residual stress’, considering that the
internal stress not only arises in as-printed samples without loading, but also evolves with plas-
tic deformation under loading [12]. Generally, the microscale internal stresses are classified as
belonging to two major types: intergranular and intragranular stresses [13]. The intergranular
internal stresses result from strain incompatibility between grains, and they self-equilibrate
over a length scale of multiple grains. In contrast, the intragranular internal stresses arise from
the dislocation structures and associated geometrically necessary dislocations (GNDs) inside
grains. These GNDs produce long-range, directional internal stresses that self-equilibrate over
cells via constituent back and forward stresses, giving rise to the kinematic hardening and
Bauschinger effects [14–18]. The internal stresses can be characterized in terms of their effect
on plastic flow and work hardening processes through a macroscopic back stress, which is the
effective resultant of various microscale back stresses stemming from different types of struc-
tural heterogeneity [17]. The macroscopic back stress can be experimentally measured from
the unloading branch of the stress–strain curve using the Dickson’s method [19].

Recently, Chen et al [9] conducted an experimental study of microscale internal stresses
in AM 316L austenitic stainless steel. The measured 0.2% offset yield strength was around
540 MPa, which is two to three times that of as-cast/wrought stainless steel. In particu-
lar, they measured a pronounced difference in tensile and compressive yield strengths, and
indicated that such a tension–compression asymmetry was governed by the back stresses
associated with printing-induced dislocation structures. They also measured substantial macro-
scopic back stresses during loading and attributed the major source of these back stresses to
the deformation-induced dislocation structures. To enable an in-depth understanding of these
experimental results, here we develop models to account for different sources of microscale
back stresses in AM 316L stainless steel. Our three-dimensional (3D) discrete dislocation
dynamics (DDD), dislocation pile-up, and crystal plasticity finite element (CPFE) simulations
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Figure 1. Coincident chemical cells and dislocation cells in as-printed 316L stainless
steel processed using LPBF. (a) SEM image of domains of chemical cells elongated
with different orientations. The red arrow indicates that the local cells elongate along
an in-plane 〈001〉 direction. (b) TEM image of dislocation cells. The red dashed lines
indicate that the cell walls are close to {100} and {110}.

capture these microscale internal stresses in the form of back and forward stresses associated
with dislocation structures and grain boundaries (GBs). The CPFE results are compared with
the macroscopic back stress and tension–compression asymmetry from experimental measure-
ments. Our work provides mechanistic insights into the origins and evolution of microscale
internal stresses in AM metallic materials.

2. Internal stresses in as-printed dislocation cells

Figure 1(a) displays a scanning electron microscopy (SEM) image of an as-printed sample of
316L stainless steel processed using LPBF, which consists of domains of sub-grain chemical
cells with different orientations. The sample was fabricated by a Concept M2 cusing machine,
with a beam size of 54 μm, laser power = 150 W, scan speed = 700 mm s−1, and build layer
thickness = 30 μm. Within each domain, the chemical cells are elongated along a 〈001〉 direc-
tion, with the corresponding side walls parallel to {100} or {110}. The middle triangle-shaped
domain in figure 1(a) shows the 〈100〉 cross section of chemical cells that are approximately
equiaxed. It is seen from this cross section that the cell size is on the order of ∼0.5 μm and the
cell wall thickness is ∼0.1 μm. These chemical cells form because of constitutional supercool-
ing and solute atom redistribution during cellular solidification [20], resulting in the Mo and
Cr-rich cell walls. They coincide with dislocation cells (figure 1(b)), since the Mo and Cr-rich
cell walls tend to trap dislocations and thus serve as a scaffold to the formation of ‘as-printed
dislocation cells’.

The as-printed dislocation cells result in a non-uniform distribution of microscale internal
stresses across these cells. In general, the distribution of microscale internal stress in disloca-
tion cells can be characterized through spatially resolved x-ray micro-diffraction measurement
and DDD simulation. In this work, we use 3D DDD simulations to analyze the internal stress
distribution in as-printed dislocation cells. Based on TEM observations, the simulated dislo-
cation cell is assumed to form a rectangle box-shaped structure with cell walls parallel to the
[100] (x-axis), [010] (y-axis) and [001] (z-axis) direction. Periodic boundary conditions are
applied along all three directions. Figures 2(a) and (b) show the 3D and two-dimensional (2D)
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Figure 2. 3D DDD simulation results of internal stresses in a periodic volume containing
idealized as-printed dislocation cells. (a) A representative 3D DDD simulation volume
for the case with a cell wall dislocation density of 2 × 1015 m−2, with periodic bound-
ary conditions in all directions, containing two intersecting fully relaxed dislocation cell
walls. (b) 2D view of the 3D cell structure in (a). The red dashed lines in (a) and (b)
indicate the boundaries of the high dislocation density walls, while the blue box in (b)
corresponds to the top view of the unit cell shown in (a). The green square in (b) repre-
sents the definition of the Chebyshev distance L to the center of the interior region. (c)
Contour of σzz on the z = 0 plane of the cell structure in (a). (d) Distribution of σzz as a
function of L through the entire 3D simulation cell of the structure in (a).

view of a unit dislocation cell structure containing two intersecting walls of high-density dislo-
cations, respectively. The dimensions of the simulation domain are 0.6 μm × 0.6 μm × 1 μm
in the x-, y-, and z-directions, respectively. Initially, rectangular dislocation edge dipolar loops
(i.e., all segments are ±3◦ from the edge orientation) are randomly distributed in the simu-
lation domain with the following conditions: (1) the dislocation density varies from 1015 to
1016 m−2 in the cell walls, with the dislocation density in the cell interior being 1%–2% of that
in the cell walls [4]; (2) the dipole heights in the walls vary between 2 nm and 6 nm; and (3)
the aspect ratio of the loops varies between 1/15 and 1/10. A 3D DDD simulation is performed
to fully relax the dislocation cell structure without loading.
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After the dislocation cell structure is fully relaxed (see figures 2(a) and (b)), the internal
stress distribution across the dislocation cell is analyzed. Figure 2(c) shows a representative
contour plot of the stress component σzz on the plane of z = 0 for the case with a cell wall
dislocation density 2 × 1015 m−2. It is observed that the cell walls exhibit higher stresses that
vary markedly, whereas the cell interiors lower stresses that vary gently. To further characterize
these internal stresses along the z-direction of the cell channel, σzz is expressed as a function
of the Chebyshev distance. Namely, the Chebyshev distance of a point, L, is defined as the
maximum value of the x-distance and y-distance to the center of the cell interior. Geometrically,
the point (x0, y0, z0) is on a square at the z = z0 plane having an edge length of 2L whose center
coincides with that of the cell interior, as illustrated in figure 2(c). Due to the periodicity of
the cell structure, we have 0 � L � 0.3 μm. The points with L � 0.25 μm are all in the cell
interior and those with L > 0.25 μm are in the cell wall, and σzz as a function of L is plotted in
figure 2(d). The three horizontal lines in each boxplot (blue vertical lines) from the bottom to
the top display the 25th, 50th (median) and 75th percentiles of σzz. In addition, the grey error
bar represents one standard deviation and the solid black line shows the average values. As
such, figure 2(d) shows that the cell interior is on average under compression in the z-direction
along the cell channel, while the cell wall is under tension; the corresponding average values
of σzz in the cell interior and the cell wall are 5.28 MPa and −12.84 MPa, respectively.

Additional 3D DDD simulations with different initial dislocation densities and structures
were carried out, while maintaining the same cell structure geometry and dimension. Figure 3
shows the internal stresses averaged along the z-direction as a function of L in different cases.
It is seen that the cell interiors and walls have an opposite stress state: when the cell interior
is under tension, the cell wall is under compression, and vice versa. Note that cases with the
same cell wall dislocation density can have opposite internal stress distributions. This can be
attributed to the different eigenstrains induced by different dislocation types used: vacancy
dislocation loops (i.e., absence of a patch of atoms in a loop) usually result in an average tensile
stress in the cell walls. In contrast, interstitial dislocation loops (i.e., addition of an extra patch
of atoms in a loop) induce in an average compressive stress in the cell walls. A systematic study
of the relationship between internal stresses and dislocation distributions will be presented in
a follow-up paper.

The above 3D DDD results reveal the non-uniform distributions of microscale internal
stresses across dislocation cells without loading, which exhibit several salient features. That
is, the average internal stresses in the cell interiors and walls have opposite signs, as dictated
by the self-equilibrium condition. The magnitudes of the average internal stresses in the cell
walls are higher than those in the cell interiors, because of a typically lower volume fraction
of the cell walls [4]. These internal stress characteristics provide support and insight for mod-
els of microscale internal stresses in AM stainless steel in section 3. We note that the internal
stresses are dependent on the dislocation content in cell walls that is controlled by the com-
plex thermomechanical history associated with large temperature gradients and rapid cooling
during additive manufacturing [5, 6]. In order to enhance the capability of DDD simulations to
better predict internal stresses in AM alloys, spatially resolved lattice strain measurements and
detailed characterizations of dislocation microstructures are needed to calibrate the dislocation
microstructures and internal stresses in DDD simulations in the future.

3. Modeling of back stresses in AM stainless steel

Previous studies in the literature [9, 10] and DDD simulations in section 2 indicate that the
‘as-printed dislocation cells’ in AM metallic materials can give rise to substantial microscale
internal stresses in both initial undeformed and plastically deformed samples, thereby affecting
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Figure 3. 3D DDD simulation results with different initial dislocation densities in cell
walls ρwall.

the mechanical properties of these alloys. To gain an in-depth understanding of the mechan-
ics of as-printed dislocation cells, we develop a crystal plasticity (CP) model that accounts
for different sources of microscale internal stresses in AM 316L stainless steel by focus-
ing on their back stress components. As schematically shown in figure 4(a), this CP model
accounts for three sources of back stresses acting on a typical dislocation source such as a
Frank–Read (FR) source inside a grain. These back stresses correspond to the long-range,
directional stresses arising from GNDs associated with as-printed dislocation cells and GBs.
Specifically, they include (1) the printing-induced back stresses (indicated by an orange arrow)
from the GNDs at dislocation cell walls before loading, (2) the deformation-induced back
stresses (indicated by a red arrow) from the GNDs (dislocation pile-ups) in as-printed disloca-
tion cells, and (3) the deformation-induced back stresses (indicated by a pink arrow) from the
GNDs at GBs. In section 3.1, we adopt a dislocation pile-up model to account for the evolu-
tion of deformation-induced back stresses in as-printed dislocation cells. The extracted back
stress relation is incorporated into the CP model in section 3.2. This CP model accounts for
all three sources of back stresses and is able to effectively represent the nonlinear evolution of
these back stresses that dictates the macroscopic stress–strain response of AM stainless steel.
This is shown by CPFE simulations of the macroscopic back stress and tension–compression
asymmetry of AM 316L stainless steel in section 4.

3.1. Dislocation pile-up model

We adopt a dislocation pile-up model to account for the evolution of deformation-induced back
stresses in as-printed dislocation cells. We follow Mughrabi’s treatment of the dislocation cells
as a composite material that is made of hard and soft components [21]. Namely, the cell walls
and interiors are the hard and soft components that contain high and low densities of dislo-
cations, respectively. The generation of directional internal stresses in the two components
is considered to result from dislocation pile-ups due to the operation of dislocation sources
such as FR sources in the cell interior. As illustrated in figure 4(b), a representative dislocation
pile-up is under an applied shear stress and held against a cell wall. The dislocations in the
pile-up collectively exert a back stress on the dislocation source. This back stress opposes the
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Figure 4. Schematic illustrations of multiple sources of back stresses. (a) Three sources
of back stresses (indicated by colored arrows) acting on a typical dislocation source such
as a Frank–Read (FR) source inside a grain (enclosed by GBs represented by black seg-
ments) containing as-printed dislocation cells enclosed by cell walls (blue segments).
(b) A dislocation pile-up against a dislocation cell wall (thick blue line). The distance
between the cell wall and the FR solution (red dot) is Lp, and the spacing between
neighboring pile-ups on parallel slip planes is Ls.

applied stress and thus lowers the local stress acting on the dislocation source. Meanwhile,
the dislocations in the pile-up collectively exert a forward stress to push against the cell wall.
This forward stress aids the applied stress and thus raises the local stress acting on dislocation
sources in the cell wall. To achieve self-equilibrium, the forward stress in the narrow cell wall
is more intense than the back stress in the wide cell interior. With increasing load, both for-
ward and back stresses rise in a running balance, thus elevating the microscale internal stresses
associated with dislocation cells.

To formulate the dislocation pile-up model in figure 4(b), we consider a FR source located
at a distance Lp from the cell wall, which corresponds to half of the dislocation cell size. The
spacing between two neighboring pile-ups on parallel slip planes in a grain is Ls. This FR
source has the critical operation stress sFR. A non-uniform distribution of Ni dislocations in the
pile-up collectively produce an internal shear stress at x by

τCell
i =

Ni∑
j=1

μb
2π(1 − ν)

1
x − x j

(1)

where μ is the shear modulus, b is the Burgers vector length, ν is Poisson’s ratio, and x j is the
equilibrium position of the jth dislocation given by the solution from Eshelby et al [22]. For a
given Ni value, the applied shear stress τi and the back stress at the FR source τCell

b,i = τCell
i (x =

Lp) should satisfy

τi − τCell
b,i = sFR (2)

meaning that the back stress acting on the FR source becomes sufficiently large to inhibit and
eventually shut down its operation. From equations (1) and (2), τCell

b,i can be determined as a
function of Ni. To incorporate the τCell

b,i vs Ni relation on a single slip system into the CP model
accounting for multiple slip systems, we express τCell

b,i as
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τCell
b,i = α

Niμb
Lp

(3)

whereα is a fitting parameter that is assumed to depend on sFR only, as verified by our numerical
results in section 4. In addition, the dislocation pile-up also exerts a forward stress τ f,i to the cell
wall, which can be estimated from the stress acting on the leading dislocation by all other Ni − 1
dislocations in the pile-up. According to the solution of equilibrium dislocation positions in a
pile-up from Eshelby et al [22], the forward stress can be expressed as

τ f ,i = (Ni − 1)τi. (4)

3.2. Crystal plasticity model

Based on the back stress model on a single slip system in section 3.1, we develop a CP model
to account for all three sources of back stresses in AM stainless steel. The CP constitutive
equations are formulated within the rate-dependent, finite-strain framework of elastic-plastic
deformation in crystal grains [23]. The deformation gradient tensor F within each grain is
decomposed into the elastic deformation gradient tensor Fe and plastic deformation gradient
tensor Fp by F = FeFp. The elastic Green strain tensor is given by Ee = 1/2(FeTFe − I), where
I is the second-order identity tensor. The second Piola–Kirchhoff stress T∗ is given by T∗ =
CEe, where C is the fourth-order stiffness tensor for each grain. The rate of Fp is given by

Ḟp = LpFp (5)

where Lp is the plastic velocity gradient tensor involving the superposition of the plastic
shearing rate on 12 {111} 〈110〉 slip systems in a face-centered cubic crystal

Lp =
12∑

i=1

γ̇p
i mi ⊗ ni (6)

where γ̇p
i is the plastic shear strain rate on the ith slip system, mi and ni are unit vectors of

the associated slip plane normal and slip direction, and ⊗ stands for the outer product of two
vectors. The plastic shearing rate is given by

γ̇p
i = γ̇0

(∣∣τi − τCell
b,i − τGB

b,i − τPr
b,i

∣∣
si

) 1
m1

sgn
(
τ − τCell

b,i − τGB
b,i − τPr

b,i

)
(7)

where τi is the resolved shear stress on the ith slip system that is given approximately by
τi = T∗ : sym(mi ⊗ ni), γ̇0 is the reference plastic shearing rate, and m1 is the strain rate sen-
sitivity. In equation (7), si is the non-directional slip resistance associated with short-range
obstacles that hinder dislocation glide; it has an identical initial value of s0 for all slip systems
and evolves as ṡi =

∑
jhi j

∣∣γ̇p
j

∣∣ and hi j = qi jh0(1 − s j/ssat)a, where qi j is the latent hardening
matrix and the diagonal elements are 1.0 while the off-diagonal elements are 1.4. The hardening
parameters h0, a and ssat are taken to be identical for all slip systems.

In equation (7), three sources of microscale back stresses τCell
b,i , τGB

b,i and τPr
b,i are taken into

account on each slip system. The τCell
b,i term represents the back stress arising from deformation-

induced GNDs associated with as-printed dislocation cells. According to the back stress
relation given by the dislocation pile-up model in section 3.1, we express τCell

b,i by rewriting
equation (3) as

τCell
b,i = αμρibLs (8)
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In equation (8), ρi is the density of GNDs on the ith slip system, and it is related to Ni

by ρi = Ni/(LsLp). Likewise, we express the forward stress in the cell wall τCell
f,i by rewriting

equation (4). That is, considering Ni is proportional to τ i, we rewrite τCell
f ,i as a second-order

polynomial function of Ni.

τCell
f ,i =

⎧⎨
⎩

[
a0
(
ρiLsLp

)2
+ b0|ρiLsLp|+ c0

]
sgn(ρiLsLp) if |ρiLsLp| > 1

0 if |ρiLsLp| � 1
(9)

where a0, b0 and c0 are the parameters that are determined by fitting to the numerical result of
τCell

f ,i as a function Ni from the pile-up model in section 3.1. The fitted forward stress is truncated
at Ni = 1, below which there are no dislocations in the pile-up to exert the forward stress.

According to equation (8) and (9), the evolution of τCell
b,i and τCell

f ,i with ρi reflects the com-
peting effects of deformation-induced hardening and softening. These effects are respectively
represented by the increase and decrease of ρi according to

ρ̇i = ρ̇+i − ρ̇−i (10)

In equation (10), ρ̇+i is the rate of increase of dislocations in pile-ups due to the operation
of FR sources in cell interiors. Following Mecking and Kocks [24], we express this hardening
process by

ρ̇+i =
γ̇p

i

bLs
(11)

In equation (10), ρ̇−i is the rate of decrease of dislocations in pile-ups due to plastic relaxation
in cell walls. Such plastic relaxation is driven by the forward stresses in the cell walls, causing
forest cutting and/or annihilation of dislocation dipoles therein [12]. As a result, the leading
dislocations in the pile-ups penetrate into the cell walls, resulting in a decrease of dislocations
in the pile-ups. We represent this softening process by

ρ̇−i = Cρ|γ̇p
i |
(
|τi + τCell

f ,i |
sw

) 1
m2

sgn(ρi) (12)

where sw is the resistance to plastic relaxation in the cell walls, Cρ and m2 are the fitting
parameters.

Equations (8)–(12) represent the nonlinear evolution of the back stress arising from
deformation-induced GNDs (through dislocation pile-ups) associated with as-printed dislo-
cation cells. During the early stage of plastic deformation, both the back and forward stresses
rise in a running balance. Since dislocation multiplication in the cell interiors dominates over
plastic relaxation in the cell walls, ρ̇+i is greater than ρ̇−i . As a result, both the back and forward
stresses increase strongly with increasing ρi. During further plastic deformation, the increasing
forward stress enhances plastic relaxation in the cell walls, leading to a stronger increase of ρ̇−i
than ρ̇+i and eventually giving rise to a saturated τCell

b,i at large plastic deformation.
The τGB

b,i term in equation (7) represents the back stress arising from the deformation-
induced GNDs associated with GBs. Whereas a similar dislocation pile-up model as the one
for τCell

b,i can be used to represent the nonlinear evolution of τGB
b,i , we adopt a simplified form

by Armstrong and Frederick [25]

τ̇GB
b,i = C1γ̇

p
i − C2τ

GB
b,i

∣∣γ̇p
i

∣∣ (13)
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where C1 is the hardening coefficient and C2 is the recovery coefficient.
The τPr

b,i term in equation (7) represents the initial printing-induced back stress associated
with dislocation cells in as-printed samples and thus does not evolve with plastic deformation.
It has been previously shown that the printing-induced back stress is responsible for the ten-
sion–compression asymmetry of AM stainless steel [9]. Hence, it is necessary to include this
back stress term in the CP model. However, it remains challenging to establish a functional
relationship between τPr

b,i on individual slip systems and the complex thermal-mechanical his-
tory of a printing process. Hence, we assign a constant back stress tensor B0 for all the grains
and calculate τCell

b,i by resolving B0 onto each slip system as

τPr
b,i = B0 : (mi ⊗ ni) (14)

We assume the non-zero diagonal components to B0 and fit these components to the experi-
mental result of tension–compression asymmetry. The above CP model takes account of differ-
ent sources of back stresses associated with the printing and deformation-induced microscale
internal stresses in AM stainless steel, and it can be generally applied to a broader range
of AM metallic materials. The model is implemented in the general finite element package
ABAQUS/Explicit [26] by writing a user material subroutine VUMAT.

4. Results and discussion

4.1. Internal stresses from a dislocation pile-up

To evaluate the back stress given by the dislocation pile-up model in section 3.1, we consider a
range of applied resolved shear stresses τ i when Lp = 0.5μm and sFR = 110 MPa (giving the
initial value s0 for the slip resistance si in equation (7)). Based on equations (1) and (2), we
calculate the equilibrium dislocation positions x j ( j = 1 . . . Ni) in the pile-up under a given τ i

value, as shown in figure 5(a). Then we calculate the corresponding back stresses τCell
i (x = Lp)

acting on the dislocation source using equation (1). As shown in figure 5(b), the calculated
back stresses τCell

b,i (black line) against the number of dislocations Ni can be well fitted by the
linear relation in equation (3) with the fitted dimensionless coefficient α of 1.455. This result
indicates that τCell

b,i increases linearly with Ni in the pile-up. From the pairs of τ i and Ni, we
also calculate the corresponding forward stress using equation (4), as shown in figure 5(b) (red
line). The calculated forward stress against Ni can also be fitted by the nonlinear relation in
equation (9). The fitted parameters a0, b0 and c0 are 21.57, 78.93 and −100.24 respectively.

4.2. Shear stress–strain response on a single slip system

To demonstrate the stress–strain response given by the CP model in section 3.2, we simulate the
shear stress–strain response on a single slip system by including the back stress terms of τCell

b,i
and τGB

b,i in equation (7), while taking τPr
b,i as zero. The effect of nonzero τPr

b,i will be studied
in section 4.3. This study allows us to track the evolution of the deformation-induced back
stresses associated with both printing-induced dislocation cells and GBs in loading–unloading
cycles. The initial value of the nondirectional slip resistance s0 is taken as sFR = 110 MPa.
Other parameters of si, τCell

b,i and τGB
b,i are listed in table 1. We implement this simplified CP

model for a single slip system by writing a Matlab program. Figure 6 shows the simulated
shear stress–strain hysteresis loops from two strain-controlled load cycles. As observed from
equation (14), τGB

b saturates when τ̇GB
b,i becomes zero. Thus, the ratio of hardening and recovery

coefficients C1/C2 determines the saturated value of τGB
b , which is taken as 74.1 MPa. Since

the hardening coefficient C1 is taken as a high value of 126 GPa, τGB
b dominates in the early
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Figure 5. Numerical results of the dislocation pile-up model in figure 4(b). (a) Equilib-
rium dislocation positions x j (black triangles) for a dislocation pile-up under different
applied resolved shear stresses τi. For a given τ i, the number of dislocations Ni in the
pile-up is determined from equation (2) at the dislocation source (red dot). The dislo-
cation positions x j are normalized by the Burgers vector length b. (b) Back stress and
forward stress are calculated as a function of the number of dislocations in the pile-up,
respectively.

Table 1. Parameters used in single-slip and CP simulations.

γ̇0 (s−1) s0 (MPa) h0 (MPa) ssat (MPa) a μ (GPa) m1 Lp (μm)

0.001 110 320 447 0.7 126 0.02 0.5

Ls (μm) sw (MPa) Cρ (μm−2) m2 b (nm) C1 (GPa) C2 ν

0.5 3000 1.15 × 105 0.8 0.284 126 1700 0.3

stage of hardening response. On the other hand, τCell
b,i represents the extra strengthening effect

due to the deformation-induced storage of GNDs associated with as-printed dislocation cells.
The increase of τCell

b,i is less steep than τ̇GB
b,i , and its saturation value is 40.3 MPa. Both τCell

b,i and
τGB

b,i become saturated at a strain level of ∼0.5%. Afterwards, the strain hardening response is
controlled by the hardening effects of short-range obstacles to dislocation glide, as represented
by a much lower rate of increase of si rather than the rates of increase of τCell

b,i and τGB
b,i that have

become saturated.

4.3. Crystal plasticity finite element results

We perform CPFE simulations of uniaxial tension and compression of AM stainless steel
using the CP equations in section 3.2, which accounts for all three sources of back stresses
given in equation (7). These CP equations are implemented in ABAQUS/Explicit [26] by writ-
ing a user material subroutine (VUMAT) with the material parameters in table 1. The finite
element polycrystal model of AM stainless steel is taken as an assembly of 125 grains with
random orientations. Each grain is represented by a brick element with reduced integration
(C3D8R). As shown in our previous work [9], such type of polycrystal model can effectively
capture the experimentally measured stress–strain behavior of AM stainless steel. To capture
the tension–compression asymmetry, we assign the non-zero normal components and zero
shear components of the printing-induced back stress tensor B0. The component along the
build direction is 54 MPa and the components along the loading and transverse directions are
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Figure 6. Simulated shear stress–strain hysteresis loops on a single slip system given
by the simplified CP model that includes the back stress terms of τCell

b,i and τGB
b,i in

equation (7) by taking τPr
b,i as zero. The total flow stress of 226.8 MPa at the strain of

1% involves the contribution of si, τCell
b,i and τGB

b,i by about 112.4 MPa, 40.3 MPa and
74.1 MPa, respectively.

−27 MPa. Compared to the case of vanishing B0, the compressive yield strength is raised
by 27 MPa, while the tensile yield strength is reduced by 27 MPa. As a result, the printing-
induced back stress B0 gives an asymmetry of tensile and compressive yield strength by
54 MPa. Figure 7(a) shows the CPFE results of uniaxial tensile and compressive stress–strain
curves, which closely match the experimental results beyond the transient initial yield point
region, including the tension–compression asymmetry. However, there exists a certain dif-
ference around the yield points in the tensile and compressive stress–strain curves between
experiments and CPFE simulations, due to the limited nonlinearity of equation (13). This initial
yielding region can be improved by enhancing the simplified form of the nonlinear evolution
of τGB

b,i in equation (13), if desired. The B0 values used are the fitting results for matching
the experimental measurement and model prediction of the amount of asymmetry in tensile
and compressive yield strengths. The physical origin of these back stresses associated with
printing-induced dislocation structures in initial undeformed samples warrants further study in
the future [27].

Figure 7(b) shows the magnified tensile loading-unloading curve around the tensile strain of
3%. From the unloading branch, the macroscopic back stress of the polycrystalline sample is
determined as follows. The macroscopic back stress, σb, is given by σb = (σ0 + σu)/2, where
σ0 is the flow stress prior to unloading, σu is the stress at the onset of reverse yielding, and the
effective stress is σeff = σ0 − σb. The σbvalue is determined as 420 MPa, given σ0 = 690 MPa
and σu = 150 MPa which are consistent with the experimental values [9].

Altogether, figure 7 demonstrates that our CP model can effectively account for dif-
ferent sources of back stresses and give predictions that closely match the macroscopic
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Figure 7. CPFE simulation results. (a) Comparison of stress–strain curves under uniax-
ial tension and compression between experiments [9] (solid lines) and CPFE simulations
(dashed lines) for as-printed samples. (b) Determination of simulated back stress from
an unloading branch using Dickson’s method.

stress–strain behavior of AM stainless steel, including the macroscopic back stress and ten-
sion–compression asymmetry. Moreover, the CP model is informed by a dislocation pile-
up model and thereby provides an in-depth understanding of how the deformation-induced
back and forward stresses associated with as-printed dislocation cells affect the nonlinear
stress–strain response of AM stainless steel at the macroscopic scale.

5. Concluding remarks

AM metallic materials often exhibit highly heterogeneous microstructures such as as-printed
dislocation cells inside grains. In general, strong structural heterogeneity in a material gives
rise to complex mechanical heterogeneity [12, 28, 29], which is manifested as multiple sources
of microscale internal stresses. In this work, we develop models of microscale internal stresses
originated from highly heterogeneous microstructures in AM stainless steel, and focus on their
back stress components. These models connect the microscale internal stresses to the overall
stress–strain response as well as the unique deformation characteristics such as the substan-
tial macroscopic back stress and tension–compression of AM stainless steel. The necessity
to include multiple sources of microscale back stresses for the constitutive modeling of AM
metallic materials is underscored, and it is in line with a broad class of plasticity models
that include multiple back stress terms [14–18]. In addition, the DDD simulation is used to
demonstrate the manifestation of heterogeneous internal stresses in dislocation cell structures.
It provides support and insight for the CPFE model that accounts for heterogeneous internal
stresses in dislocation cell structures. Further studies are needed to bridge DDD and CPFE
simulations through passing of quantitative information in the future.

Given the great potential of AM metallic materials for engineering applications, the mechan-
ics of heterogeneous microstructures including as-printed dislocation structures warrants fur-
ther studies in the future. For example, a combined experimental and modeling study is
needed to characterize the relative contributions of different sources of microscale internal
stresses to the macroscopic stress–strain response, including the macroscopic back stress.
Furthermore, it is essential to correlate different sources of microscale back stresses with
underlying dislocation microstructures. To this end, we note that recent years have witnessed
rapid development of in situ characterization approaches through advanced x-ray microscopy
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[30, 31], transmission electron microscopy [17], electron backscattered diffraction [8], etc.
They enable high-resolution characterizations of the spatial-temporal evolution of disloca-
tion distributions, lattice strains and orientations, etc. The integration between advanced in
situ characterizations and constitutive models can open many opportunities to understand the
effects of highly heterogeneous microstructures on the mechanical behavior of AM metals and
alloys.
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