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Temperature and composition dependent screw dislocation
mobility in austenitic stainless steels from large-scale molecular
dynamics
Kevin Chu 1✉, Michael E. Foster2, Ryan B. Sills3, Xiaowang Zhou2, Ting Zhu 1,4 and David L. McDowell1,4

Extensive molecular dynamics simulations are performed to determine screw dislocation mobility in austenitic Fe0.7NixCr0.3-x
stainless steels as a function of temperature ranging from 100 to 1300 K, resolved shear stress from 30 to 140MPa, and Ni
composition from 0.0 to 30.0 at%. These mobility data are fitted to a linear mobility law with a nonzero stress offset, referred to as
the threshold stress. We find that both the linear drag coefficient and the threshold stress increase with Ni composition. The drag
coefficient increases with temperature, whereas the threshold stress decreases with temperature. Based on these calculations, we
determine fitting functions for the linear solute drag coefficient as a function of temperature and composition. The mobility laws
determined in this study may serve to inform dislocation dynamics simulations pertinent to dislocation network evolution at
elevated temperatures for a wide composition range of austenitic stainless steels.
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INTRODUCTION
The use of austenitic stainless steels such as 304 and 316 is
ubiquitous across applications that demand strength and corro-
sion resistance at moderate cost. Advanced austenitic steels are
undeniably among the most important materials of the modern
age, spanning automotive, aerospace, nuclear, and consumer
household applications. Recently, advances in nonequilibrium
additive manufacturing methods such as selective laser melting
(SLM) have revitalized scientific inquiry into processing and
microstructural properties of such steels. Specifically, the forma-
tion of complex 3D dislocation networks and chemical ordering
has been observed, leading to novel deformation behavior
without the traditional tradeoff between strength and ductility1–
4. The phenomena that affect material responses and properties
span multiple length scales. The modeling of such defect
structures is an inherently multiscale problem5,6, and balancing
accuracy and applicability becomes increasingly important. The
behavior of individual dislocations, microstructure-scale mechan-
isms, and collective dislocation interactions must be bridged to
enable predictive simulation of dislocation plasticity. Discrete
dislocation dynamics (DDD) is one such method that seeks to
describe mesoscale phenomena by evolving microstructures using
a set of physics-based heuristic rules6–8. Continued advancements
in the implementation of such rules has equipped DDD with the
ability to describe mechanisms such as dislocation glide, climb,
and cross slip, which contribute to development of three-
dimensional dislocation structures9,10. A fundamental driver in all
such extensions is the mapping of the local resolved shear stress
to the dislocation glide velocity on specific slip systems, described
by the mobility law11–15. While difficult to ascertain experimen-
tally, mobilities have been readily computed via molecular
dynamics (MD) simulations for pure metals and binary alloys for
both face-centered-cubic (fcc) and body-centered-cubic (bcc)
crystals12–18. To date, the lack of mobility data for more complex

alloys has limited the application of DDD simulations to the SLM
austenitic stainless steels of interest, with some authors19,20 opting
to take single bulk handbook values for the mobility despite clear
evidence of temperature and composition dependence12,16,21.
Furthermore, the temperature ranges simulated in typical mobility
calculations must be extended to capture the high temperatures
induced by the laser path traversal and subsequent cooling during
SLM. Moreover, austenitic stainless steels are often employed in
elevated temperature applications and these ranges are simulta-
neously captured. Lastly, an examination of composition effects
on dislocation mobility is key to understanding the effects of
alloying on the strengthening behavior. In this work, we conduct
an extensive MD study on screw dislocation mobility in the
austenitic Fe0.7NixCr1−x stainless steels in an extended tempera-
ture and composition regime.
The dislocation mobility can be generally divided into thermally

activated17,21 regime, a linear drag-dominated16,22 regime which
at higher strain rates represents phonon drag, and an asymptotic
shear wave-limited relativistic regime12,23,24. In pure fcc metals,
where the Peierls stress (i.e., minimum stress to move the
dislocation at 0 K) is negligible, only the phonon and relativistic
regimes are observed. Mobility functions relate the resolved shear
stress τ to the dislocation velocity v, and typically reflect a
piecewise phenomenological form, i.e.,

τb ¼ ATv v < v0
ATv þ Dðv � v0Þ3=2 v > v0

�
(1)

Here, fitting parameters A and D are linear and nonlinear drag
coefficients, respectively, b is the Burgers vector length, and v0 a
minimum critical velocity for radiative dispersion. It is also
common to define a friction coefficient that incorporates
temperature effects as AT= B(T), though this term is often
interchangeable with drag coefficient17,25,26. The power law
exponent of 3/2, as originally suggested by Eshelby for the
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dispersive term23, is commonly cited in the literature; however,
recent studies have sought to render more accurate fits as a
function of character angle and stress state13,14,27. Moreover,
various interpolations between screw and edge character drag
coefficients are typically used in the absence of this data during
conventional DDD simulations28. In the low stress regime at zero
temperature, a threshold stress may be required to initiate
dislocation glide in the fully linear drag-dominated regime. For a
pure metal this is governed by the Peierls stress. In random solid
solutions, the presence of solute–dislocation and solute–solute
interactions21 induces elastic misfit strain fields29,30, presenting
non-negligible pinning barriers16 that must be overcome to
initiate dislocation glide. This threshold stress controls the
material’s resistance to dislocation glide at low temperatures,
where the kinetics of thermally activated obstacle bypass is slow.
Recently, efforts to predict this in the context of concentrated
solid solutions have been proposed30 and will be discussed later in
this work. However, most DDD simulations in the literature
consider only the regions described by Eq. (1), applying the linear
drag fit through the regime of lower effective stress
range14,19,28,31,32. On the other hand, the threshold for the onset
of dislocation glide becomes increasingly negligible at elevated
temperatures33 at which thermally-assisted dislocation migration
is more pronounced. In this work, we focus primarily on the linear
drag region while characterizing variations in the threshold stress.
Furthermore, for the range of applied resolved shear stress
explored here we omit dispersive (high velocity) effects34.
In order to describe temperature and composition effects on

linear drag induced by the solute fluctuation in a binary alloy,
Marian and Caro12 proposed an additional term in the drag
coefficient A, i.e.,

AðT ; xÞ ¼ A� þ xβðTÞ; (2)

where x is the solute concentration. This suggests a linear
dependence on composition. However, this form was derived and
validated against a binary alloy within a limited temperature
range; the presence of multiple solute atoms may require
additional terms or an alternate form altogether, particularly if
their relative misfit volumes differ30. In most previous work
seeking to define DDD mobility functions, explicit values for drag
coefficient have been calculated and used at a few select
temperatures and compositions of interest. To the best of our
knowledge, the current work offers the most comprehensive
analysis to date across both temperature and composition

variables in the Fe0.7NixCr0.3−x austenitic stainless-steel alloy
system.

RESULTS AND DISCUSSION
Fitting procedure for dislocation velocity data
Dislocation velocities are extracted from MD simulations run for
fcc Fe0.7NixCr0.3−x at seven compositions (xNi= 0.00, 0.05, 0.10,
0.15, 0.20, 0.25, and 0.30), eight stresses (τ= 30, 40, 60, 80, 90, 100,
120, and 140 MPa), and seven temperatures (T= 100, 300, 500,
700, 900, 1100, and 1300 K). The standard deviation of velocity
across replicate simulations diminishes with increasing stress
(maximum of 3% at 100 MPa); therefore, only one simulation was
performed for each case when τ ≥ 120 MPa. Dislocation velocities
obtained at different stresses for a fixed Ni composition of xNi=
0.15 are shown in Fig. 1a for temperature= 100 K and Fig. 1b for
temperature= 500 K. Two linear fits to each set of MD data points
are presented: the green line indicates a linear fit excluding
velocities below 0.1 Å/ps, while the red line indicates the linear fit
through all data points. For subsequent analysis we fit to the
truncated mobility data defined here.
The R-squared value (inset, Fig. 1) of these fits decreases with

increasing temperature. This can be attributed to the non-
negligible threshold stress from the thermally-activated regime
to the onset of drag-dominated dislocation glide, as discussed in
“Methods” section. Significant threshold stresses at low tempera-
ture are observed across all compositions. When temperature is
increased to 500 K, it is observed that this threshold stress is
diminished, and a linear approximation through the entire stress
range is increasingly valid at higher temperatures. We do not
enforce a fit through the origin; the regression is allowed to
compute a nonzero stress intercept that would correspond to the
transition to the thermally-activated regime at lower stress levels.
A detailed discussion regarding the use of least squares regression
in determining drag coefficient can be found in the ref. 22.

Dislocation mobility curves
Average dislocation velocities (over the five replicas) are
calculated as a function of shear stress for all compositions and
temperatures simulated, and results are summarized in Fig. 2a–g.
The more significant nonlinearity at low temperatures (100 and
300 K) and the nonzero stresses for the onset of dislocation
motion in the linear solute drag regime seen in Fig. 1a, b, can be
observed across all compositions. It is also apparent that the
slopes of the mobility curves decrease with increasing

Fig. 1 Temperature effect on linear fit determination. Dislocation velocity as a function of stress for Ni concentration of xNi= 0.15 at a T=
100 K and b T= 500 K. Comparison of the truncated and full linear fits to the MD data are shown.
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temperature at all compositions, consistent with drag-controlled
dynamic behavior. In other words, the drag coefficient increases
with temperature once the initial threshold stress is overcome; this
is discussed further in the following sections.
Qualitatively, Fig. 2 shows no evidence of a plateaued

relativistic or dispersive regime for the stress range tested.
Indeed, the critical velocity v0 for crossover into this regime is
comparable to the lowest shear wave speed in the solid12, and
was determined for various other systems to be at least double
that of our highest observed velocity of ~8 Å/ps13,16,22,32,35. Taken
together, these two observations indicate that a linear mobility
law with nonzero stress at zero velocity suffices in the viscous
damping region.

To examine solute effects, we plot the average velocity as a
function of Ni composition for different stresses and temperatures,
shown in Fig. 3. It is evident that the average velocity decreases
monotonically with increasing Ni content, suggesting a stronger
pinning contribution from Ni relative to Cr. Note, we also considered
binary Fe1−xNix alloys and a similar decrease in velocity was observed
as the alloy concentration increased (see Supplementary Fig. 3).

Local environment effect on dislocation mobility
The dislocation mobility in random alloys is controlled primarily by
solute–dislocation interactions. Local environment heterogeneity
resulting from fluctuations in swelling volume and elastic constant
differences are important to capture in executing MD simulations of

a) b) c) d)

e) f) g)

Fig. 3 Composition dependent dislocation velocity. Averaged velocity in the ternary alloy as a function of Ni composition. Lines plotted here
serve as a visual guide to demarcate data and do not reflect any fitting procedure.

a) b) c)

g)

d)

f)e)

Fig. 2 Dislocation mobility curves. Dislocation velocity as a function of resolved shear stress for different Ni compositions at temperatures a
100 K, b 300 K, c 500 K, d 700 K, e 900 K, f 1100 K, and g 1300 K. Lines plotted here serve as a visual guide to demarcate data and do not reflect
any fitting procedure.
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this nature. To expand on this, average atom simulations are
executed for a fixed composition and temperature of xNi= 0.15, T=
300 K for comparison. The simulation cell and parameters follow
those outlined in “Methods” section. The dislocation position is
plotted as a function of timestep for a single simulated stress τ=
60MPa in Fig. 4a, and the full mobility curve for these parameters is
shown in Fig. 4b. It is evident here that the stress required to initiate
dislocation motion is much lower for the average atom results,
resembling a pure FCC crystal. In addition, the glide velocity of the
dislocation is also significantly higher for a given applied shear stress
when using a purely average atom representation. In fact, many
solute-strengthening theories like the one explored later in this work,
among others21,24,29, derive from the interaction between solute and
dislocation stress fields during glide. While an average-atom potential
may very well capture the static energetics and bulk properties of
alloys, these direct comparisons show it does not adequately capture
glide in random alloys. This fact was pointed out in36, though a
mixed average atom potential wherein true solutes interact with
average atom types may address this. A detailed comparison of the
lattice distortion effect stemming from random solute distributions
for a different system can be found in the ref. 37.

Drag coefficient
Based on Eq. (2), drag coefficient is defined as B in v ¼ τb

B Tð Þ þ c
where c is introduced to represent the intercept computed by the

fit. Here, by applying the regression through the truncated
mobility data as described in Fig. 1, and the drag coefficient at
each simulated temperature and composition can be extracted.
Figure 5a, b show the computed drag coefficients as a function of
temperature and Ni content and vice versa. The drag coefficient
increases significantly with increasing temperature and Ni
composition. Figure 5a shows that the dependence of the drag
coefficient on temperature can be reasonably well approximated
as linear. The fitting parameters for Fig. 5a are reported in Table 1.

Fig. 4 Comparison of average-atom and true random alloy simulations. a Dislocation position vs. time for a fixed composition of xNi= 0.15
at T= 300 K and τ= 60MPa, b dislocation mobility curve for a fixed composition of xNi= 0.15 at T= 300 K.

a) b)

Fig. 5 Fitted drag coefficient for all parameters. Drag coefficient as a function of a temperature for various Ni contents and b Ni content for
various temperatures. Parameters for linear regressions in a are given in Table 1.

Table 1. Parameters for drag coefficient as a function of temperature:
B(T)=mT+ B0.

xNi m [(Pa s)K−1] B0 [Pa s] R-squared Standard error [Pa s]

0 2.601 × 10−8 2.5 × 10−5 0.981 1.602 × 10−9

0.05 2.73 × 10−8 2.5 × 10−5 0.983 1.567 × 10−9

0.1 2.857 × 10−8 2.5 × 10−5 0.989 1.304 × 10−9

0.15 3.042 × 10−8 2.6 × 10−5 0.987 1.537 × 10−9

0.2 3.139 × 10−8 2.8 × 10−5 0.987 1.619 × 10−9

0.25 3.201 × 10−8 3.0 × 10−5 0.991 1.386 × 10−9

0.3 3.304 × 10−8 3.1 × 10−5 0.983 1.969 × 10−9
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Threshold stress
In solid solutions, dislocations are pinned at obstacles and must be
overcome by the applied stress in order to initiate glide. This
threshold stress τth is sometimes referred to as the static friction
stress12,16,30; we define this threshold as the resolved shear stress
at which the dislocation velocity exceeds 0.25 Å/ps, which is
approximately the smallest velocity which could be obtained from
the MD data38. As emphasized previously, the mobility curve does
not remain linear for the entire stress and temperature range, in
particular at the lower temperatures considered; therefore, the
stress corresponding to 0.25 Å/ps is determined by interpolation
of the MD data. At elevated temperature, where the mobility curve
is linear, we estimate the threshold stress as the x-axis intercept
value from the linear fit to the MD data. A comparison of intercept
and interpolated threshold stress is shown as a function of
temperature in Fig. 6a–g for different Ni compositions. The friction
stresses are fit to an exponential function of temperature of the
form τth= A0 exp(−δT); the fits are shown in red in Fig. 7. Note
that the interpolated stresses are used for the fit where possible.
We can thereby estimate the friction stresses at 0 K, τth0, by
extrapolating the exponential fit. Fitting parameters for each
composition are listed in Table 2.

Solute effect on drag coefficient
In simulations of complex alloy systems, dislocation glide is
sensitive to the random seed used to generate the alloys21. To
address this, the dislocation velocities were averaged and large
simulation cells were used. Additionally, our calculations (Supple-
mentary Fig. 2) and previous work38 indicate that there exists a
critical dislocation line length below, which dislocation mobility is
sensitive to the simulation cell size due to the pinning-depinning
characteristics of dislocation motion in alloys, especially at lower
stresses (see refs. 21,35,38 for a more detailed discussion of this
phenomena). In this work, the dislocation line length is ~400 nm,
almost ten times longer than that used in ref. 21, and five times
larger than that used in ref. 12. Together, these improvements lend
confidence to the composition-dependent results acquired here.
Moreover, the drag coefficient dependence on solute concentra-
tion has been clearly identified by various MD simulations in

a) b) c) d)

e) f) g)

Interpolated stress 
Intercept stress 
Exponential fit 

Fig. 6 Threshold stress as a function of temperature from MD. a xNi= 0.0, b xNi= 0.05, c xNi= 0.1, d xNi= 0.15, e xNi= 0.2, f xNi= 0.25, and g
xNi= 0.3.

Fig. 7 Temperature dependent drag coefficient function. Drag
coefficient rate of increase with composition as a function of
temperature from Fig. 5b. Linear fit is included in the inset, as
defined by Marian and Caro12.

Table 2. Fitting parameters for threshold stress as a function of
temperature:τth= A0 exp(−δT).

xNi A0 [MPa] δ [1/K]

0 49.17 7.592 × 10−4

0.05 51.08 7.639 × 10−4

0.1 51.05 7.370 × 10−4

0.15 51.19 6.605 × 10−4

0.2 52.67 6.545 × 10−4

0.25 61.83 8.111 × 10−4

0.3 58.82 7.173 × 10−4
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binary alloys12,16,21. In previous work on pure elements, it has been
observed that the drag coefficient is nearly independent of
temperature, when calculated as A= B/T in Eq. (1)16; however,
when our drag coefficient calculations are normalized by
temperature this is not observed, particularly at lower tempera-
tures. A similar behavior was observed in38, where a power–law
dependence of the drag coefficient on temperature was necessary
to fit the MD data. A possible explanation for this is the additional
variation in energetic barriers introduced by solute atom
interactions with the dislocation. This temperature dependence
can become more complex with an increasing number of
components, since multiple solute types can have interacting
stress fields. The drag coefficient expression, Eq. (2), derived by
Marian and Caro13 was initially based on narrow ranges of
concentration and temperature for binary systems. In this
equation, the composition and temperature effects are coupled
into a single multiplicative term, so that the intercept parameter A*

reduces to a temperature-independent and composition-
independent value for the pure system. In contrast, we cannot
fit our data to Eq. (2) because the system explored here is a ternary
alloy, resulting in multiple values for the intercept; therefore, we
point to Table 1 for a more easily interpreted form of the mobility
function. We may still estimate the derivative dB/dx of the drag
coefficient with respect to concentration x at each temperature
and obtain β(T), as defined in Eq. (2), from the linear regressions
shown in Fig. 5b. Note that since we are simultaneously varying xNi
and xCr, dB/dx= dB/dxNi=−dB/dxCr and our fit to β(T) is only
strictly valid for the case of xNi+ xCr= 0.3 considered here. The
result is shown with its linear fit in Fig. 7.
The above analysis suggests that Eq. (2) is difficult to apply to

ternary alloy systems and other complex alloys (e.g., high-entropy
alloys). Figure 5 reveals that the drag coefficient remains fairly
linear as a function of both variables; therefore, we explore a
multiple regression approach:

BðT ; xÞ ¼ B0 þ ωT þ γx (3)

Here, ω and γ are linear fitting constants. Equation (3) decouples
the temperature and composition dependence but enables a
single compact drag coefficient function to be implemented into
DDD simulations for alloys with a wide range of temperature and
composition. Its linear nature does not conflict with the existing
theory, regarding temperature and composition, on dislocation
mobility.

Parameters of Eq. (3) are fit to our MD data and are listed in
Table 3. Using the fitted parameters, the estimated drag
coefficient is shown as a function of temperature and composition
in Fig. 8a. The absolute percent error of the fitted expression is
shown in Fig. 8b. We can see that the functional form in Eq. (3)
results in a good fit for the entire domain. (maximum error of 10%
at low temperature and an average error below 3%). This confirms
that the temperature and composition effects are not strongly
nonlinearly coupled in the ranges investigated and separation of
these two variables is a good approximation.

Theoretical predictions of zero temperature threshold stress
The 0 K friction stress calculated above is the purely static
contribution of the solute atoms to material strengthening in the
absence of kinetic contributions at finite temperature. Concep-
tually, it is analogous to the zero-temperature flow stress τth0
recently derived by Leyson et al.39 for solid solutions and applied
to high entropy alloys by Varvenne et al.30. Based on the purely
elastic interactions between the solute and dislocation’s hydro-
static stress field, Varvenne et al. derived an analytical expression
for τth0 as

τth0 ¼ 0:051α�
1
3μ

1þ ν

1� ν

� �4
3

f1 wcð Þ ´
P

n xn ΔV
2
n þ σ2

ΔVn

� �
b6

2
4

3
5
2=3

:

(4)

Here, xn is the concentration of solute species n, α is the
dislocation line tension parameter, μ is the alloy shear modulus, ν
is the Poisson’s ratio, f1(wc) is a factor describing the bowing
geometry, b is the magnitude of the composition-weighted
Burgers vector component in the glide (edge) direction, and
ΔVn and σΔVn are the mean misfit swelling volume and associated
standard deviation, respectively. f1 is referred to as the minimized
core coefficient and was derived by Varvenne et al.30 to be a
constant 0.35 for the fcc edge dislocation case in Fe0.70NixCr0.3-x. In
general, the partial spacing is reduced for pure screw disloca-
tions30, and therefore the value of f1 must be recalculated for
screw dislocations. Following the approach of Varvenne et al.30,
we recalculate f1= 0.059 (see Supplementary Figs. 4, 5). The line
tension parameter is α= 0.492 for screw dislocations based on MD
calculations of screw and edge line tension in Al40. Elastic
constants μ and ν are determined by molecular statics at 0 K for
each solute concentration in the ternary alloy using five random
alloy configurations for each concentration with 4000 atoms in the
simulation cell. We calculate the “isotropic average” elastic
constants by rotating the Voigt elastic tensor through all
orientations normal to the dislocation Burgers vector ( 110

� �
direction)41. To illustrate, Fig. 9a shows Poisson’s ratio as a function
of the rotation angle and Fig. 9b shows the averaged Poisson’s
ratio and shear modulus μ as a function of Ni composition.

Table 3. Parameters for drag coefficient as a function of temperature
and composition: B(T, x)= B0+ωT+ γx.

B0 [Pa·s] ω[(Pa s)K−1] γ [Pa s]

1.824 × 10−5 3.226 × 10−5 4.277 × 10−5

a) b)

Fig. 8 Characteristics of fitted drag coefficient. a Full drag coefficient surface from MD data and bivariate linear fit (wireframe grid) as a
function of temperature and composition, b error of the fitted expression as a function of temperature and composition.
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In order to calculate τth0 using Eq. (4), ΔVn and σΔVn are needed.
Following the previous approach38, molecular statics simulations
with 868 atoms are performed to calculate ΔVn and σΔVn
associated with substitution of a single solute atom for every
lattice site in the system. We loop over all lattice sites in a random
ternary solid solution at each target composition for both Cr and
Ni solutes. When the site is occupied by Fe, it is switched to the
desired solute atom. When the site is occupied by the solute atom,
it is switched to Fe. The average volume change ΔVn due to the
insertion of the solute atom to a random Fe0.7NixCr0.3−x alloy can
thus be determined. The resulting ΔVCr, ΔVNi, ΔVFe values and
their standard deviations are shown in Fig. 10 as a function of xNi.
Using ΔVn and σΔVn, the 0 K friction stress is calculated using the
theoretical expression Eq. (4).
The results of τth0 obtained from the theory and MD are

compared in Fig. 11. The molecular statics results indicate large
standard deviation σΔVn, in some cases exceeding the computed
mean value ΔVn. This observation is unsurprising due to the highly
variable local solute environment in the alloy system. The friction
stress predictions shown in ref. 30 neglected the influence of σΔVn
for each solute, whereas our computations here explicitly include
it. We similarly calculate μ and ν at each composition rather than
taking an averaged value, and the elastic constant terms introduce
another degree of composition dependence that is reflected in
the analytical model results (Fig. 11).
We note that the predictions presented in Varvenne et al.30

below a temperature of 200 K also deviate from the available
experimental results by over 50 MPa for the alloys investigated,
and Varvenne et al.30 noted that the predictions become
increasingly dependent on the line tension parameter α at low
temperatures. In addition, while we rederived the core parameters
for the dissociated screw dislocation, the edge components cancel
beyond the core region, and the long-range stress fields for the
screw dislocation do not interact with the purely hydrostatic

solute misfit stress. The Varvenne et al. theory accounts for solute
interactions at both short and long ranges; however, so we do not
expect this to affect the applicability of the theory for screw
dislocations.
The final point is that this theory was developed and validated

against equiatomic multicomponent alloys, whereas the present
work considers a relatively dilute solid solution in comparison. As
such, the use of averaged values in the analytical expression may
be sufficient for high entropy alloys; however, in our case we
notice that the Varvenne et al.30 expression predicts a stronger
dependence on composition which is not reflected in the MD
results. One interesting feature that is captured by both models is
the non-monotonic behavior at xNi= 0.25, which emphasizes

a) b)

Fig. 9 Composition-dependent average elastic properties. Calculated Poisson’s ratio and shear modulus: a Poisson’s ratio as a function of
rotation angle (shaded region represents standard deviation across five random alloy initializations), and b averaged “isotropic” Poisson’s ratio
and shear modulus as a function of Ni composition.

a) b)

Fig. 10 Solute insertion swelling volumes. a Swelling volume (ΔVn) and b its standard deviation as a function of Ni, Cr, and Fe insertions in
the ternary alloy.

Fig. 11 Zero temperature friction stress comparison from theory.
Comparison of the theoretical30 and MD results for the 0 K friction
stress as a function of xNi.
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again that the fluctuations in solute interaction with the
dilatational stress field of the screw dislocation is a major
contributor to strengthening.
Extensive MD simulations carried out in this work have allowed

us to obtain reliable mobility data for the Fe0.7NixCr0.3−x alloy. We
find the following:

1. The dislocation drag coefficient follows a consistent trend
with temperature and composition in the linear solute drag
regime. In particular, Ni has a more pronounced dragging
effect than Cr on screw dislocations. This effect is slightly
stronger at higher temperatures (Fig. 4).

2. The conventional drag coefficient B(T) has been computed
as a function of temperature at each composition for ternary
Fe0.7NixCr0.3−x alloys representative of austenitic stainless
steels. This is useful to inform DDD simulations at a fixed
alloy composition.

3. We have proposed a bivariate linear fit of the drag
coefficient applicable to temperature, stress, and composi-
tion range. The error of the fit is low for applied stress
between 10 and 140 MPa, suggesting weak nonlinear
coupling between composition and temperature effects in
this range.

4. Our results are compared to a recently developed analytical
model for strengthening in concentrated solid solutions
which we extend to the screw dislocation case, suggesting
predictive limitations for low temperature behavior, notably
the 0 K friction stress.

As a direct outcome of this work, the functional form for the
drag coefficient as a function of temperature and solute
composition in austenitic stainless steels may be implemented
directly in mesoscale models. This is an important advance-
ment in the development of a physically informed mobility
model for enabling accurate DDD simulations of 3XX austenitic
stainless-steel. In particular, it is applicable to elevated
temperatures and a range of composition typical in applica-
tions of interest or associated with composition gradients
resulting from additive manufacturing processes. The high cost
of simulating such large systems and parameter spaces at full
atomic resolution may motivate the use of coarse-graining
techniques such as the concurrent-atomistic-continuum (CAC)
method42 or other multiscale methods5 in future studies,
particularly for considering extended defect-defect or defect-
interface reactions.

METHODS
Interatomic potential
Herein we employ a recently developed Fe–Ni–Cr embedded atom
method (EAM) potential43 as a surrogate for austenitic stainless steel. This
potential was selected because: (1) it enables stable MD simulations of the
fcc structure; (2) it captures the correct unstable stacking and stable
stacking fault energies (SFE); (3) it accurately reproduces elastic constants;
(4) it gives reasonable trends of various energies and volumes for a range
of compositions; and (5) it predicts that solutes remain in solution for the
composition range of interest here. The latter two points are particularly
relevant when considering the overall effect of alloying. Together, these
five features are pertinent to studying the mechanical behavior of stainless
steels. In the context of dislocation behavior, the correct SFE trend with
composition is especially important, as the SFE controls equilibrium
Shockley partial spacing. The potential selected matches closely the trend
observed in both DFT and experiments44–46 (see Supplementary Figs. 6, 7).
Phonon characteristics for this potential can be found in the ref. 38 and are
important in controlling phonon drag behavior. One thing to note is that
that while varying the composition in Fe0.7NixCr0.3−x, the alloy is not strictly
austenitic at xNi= 0.0 but remains fcc at all temperatures considered here.
This does not affect the interpretation of composition-dependent results
obtained. Average-atom EAM potentials36 have also recently been
proposed as an efficient way to represent random alloy characteristics.

We generate average-atom potentials for each target composition studied
here to compare with the true random alloy results reported.

Molecular dynamics simulation
Our simulation cells embedded with a single screw dislocation contain
11,108,370 atoms with dimensions of approximately 4000 Å in x, 160 Å in y,
and 200 Å in z. This large dimension in the dislocation line direction allows
for additional sampling of a wide range of solute environments, giving a
more accurate dislocation line response and size-independent velocities38.
Using different random number seeds, five replica simulations were
performed for each stress and temperature condition to reduce any effect
of the particular initialization method.
As shown in Fig. 12, a displacement field is applied to the atoms to

create a perfect screw dislocation with both its line direction and Burgers
vector b

*

¼ ½110�a=2 parallel to x. The initially perfect dislocation is allowed
to relax, resulting in its dissociation into two Shockley partials on the
expected (111) slip plane.
Our simulations employ periodic boundary conditions in x and z, and a

free boundary condition in y. Note that for this fcc geometry, the stacking
period in z is 6(112) planes as in the ABCDEFABCDEF… sequence. Our
nominal size (dislocation line direction) is set as large as possible to
circumvent the dislocation length-dependent regime for most simulated
conditions (stress and temperature)38. Weinberger et al.22 have previously
investigated the effect of nonperiodic line length; however, this introduces
the effects of pinning at the free surfaces, which we avoid here by using
fully periodic boundaries in both the glide(z) and line(x) directions. The
effects of y and z (nonline direction) dimensions were not explicitly studied
previously38 and are included in Supplementary Fig. 1; we found that the y
and z dimensions do not affect the velocity in an appreciable way.
Moreover, no cross slip along the screw dislocation was observed for any
of the configurations simulated.
During the MD simulations, the upper and lower 2(111) planes of surface

atoms are subject to constant opposing forces parallel to the Burgers
vector (i.e., parallel to x) to obtain the intended resolved shear stress is τ.
The initial velocities of atoms in these two surface layers are set to zero,
and initial velocities of other atoms are assigned based on a Boltzmann
distribution and the simulated temperature. Atom trajectories are then
solved using an NVE (constant volume and energy) ensemble for the
surface atoms and a 1 atm pressure NPT (constant pressure and
temperature) ensemble for the other atoms. All MD simulations are
performed for a total of 4 ns using LAMMPS47, and dislocation position as a
function of time is calculated from total relative displacement of the crystal
above and below the dislocation glide plane following the previous
approach38. We employ standard thermostat/barostat damping para-
meters of 100 * dt and 1000 * dt, respectively, with a timestep size of dt=
0.004 ps. To ensure that the results were not sensitive to the choice of
damping parameter, mobility calculations were also run for a fixed
configuration with three different values for each. There was negligible
variation between the velocities calculated.

Fig. 12 MD simulation cell geometry. MD simulation cell geometry
for dislocation mobility simulations. The initial position of the
inserted screw dislocation is indicated by the black arrow. Atoms in
green are fcc coordination while white atoms indicate the free
surface in the y direction.
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