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ABSTRACT: There are prevailing concerns with the critical dimensions when
conventional theories break down. Here we find that the Griffith criterion
remains valid for cracks down to 10 nm but overestimates the strength of
shorter cracks. We observe the preferred crack extension along the zigzag edge
in graphene, and explain this phenomenon by local strength-based failure rather
than energy-based Griffith criterion. These results provide a mechanistic basis
for reliable applications of graphene in miniaturized devices and nano-
composites.
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Most mechanical theories used in engineering practice are
developed for relatively large structures. Their applic-

ability in nanoscale systems is however uncertain. The
continuum theories usually work well for the collective behavior
of a large ensemble of basic building blocks like atoms or
molecules but are not guaranteed to hold when they are applied
to systems composed of a limited number of basic units.
Indeed, deviation of certain properties in small systems from
their bulk counterparts is foreseen by Feynman.1 The ensuing
question is whether or not there is a critical size for a theory,
below which this theory fails to adequately capture the physical
behavior of a miniaturized system. For engineering applications,
knowing such critical size is of paramount significance for the
design of small structures that are mechanically reliable. The
Griffith criterion of brittle fracture is one of the most
fundamental theories for characterizing the mechanical
behavior of defective materials and has been widely used in
engineering design.2,3 In this work, we explore the physical limit
of the Griffith criterion, that is, when it fails to predict the
fracture strength of materials with small nanosized cracks. The
challenge to address such question of size limit lies in the
difficulty to bridge the studies of microscopic and macroscopic
systems by either experiments or atomistic simulations. On one
hand, while progress has been recently made in the nano-
mechanical testing of materials,4−9 it is still difficult to conduct
a series of controlled experiments by systematically reducing
the sample size while retaining the consistent microstructural
features. On the other hand, molecular dynamics (MD)
simulations can effectively explore brittle fracture at the atomic
scale,10−14 but full atomistic simulations are yet too computa-
tionally expensive to simulate three-dimensional systems with
feature size larger than 100 nm.
To understand the applicability of the continuum mechanics

theory to a discrete atomistic system, it is necessary to probe
the mechanical behavior of sufficiently large samples with
atomic resolution. To this end, graphene is an ideal model
material to investigate the critical size when the Griffith

criterion of brittle fracture breaks down. This is because the
monolayer graphene is only one atom thick15 such that the in-
plane dimensions can be taken to be adequately large (e.g., up
to micrometers) in order for reducing the sample size effects on
both the fracture mode and load without significantly increasing
the computational cost. Samples with such dimensions are
already accessible by recent cutting-edge experiments.4−9

Graphene is brittle in nature. It has ultrahigh strength5 and
exhibits negligible plasticity until failure at room temperature.16

In addition, its elastic response is isotropic17 at small strains.
The behavior of graphene has been explored in recent
years.13,14,17−27 A recent investigation suggested that the
Griffith criterion is sound in cracks as short as 1 nm.14 Because
the authors used a tangential modulus (pertinent to the failure
strain in a stress−strain curve) in the Griffith equation and also
only considered cracks shorter than 3 nm, it is not clear
whether the same equation can be applied to predict cracks
with length of 3 nm to tens of nanometer. Hence, it remains
unclear regarding the critical crack size when the Griffith
criterion of brittle fracture breaks down. In this paper, we use
atomistic simulations to determine the critical crack size. We
show that the Griffith fracture stress in precracked single-layer
graphene from MD simulations deviates from that predicted by
Griffith’s criterion as the crack size is below ∼10 nm. We
further investigate the orientation dependence of fracture
behaviors and properties, including crack propagation, failure
strength, and failure strain in graphene.
We first study the ideal tensile strength of pristine graphene

as a function of loading orientation by using the density
functional theory (DFT) and energy minimization calculations.
The detailed computational procedure has been previously
described in reference.26 In Figure 1a, we define θ as the angle
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between the tensile loading direction (along x-axis) and the
zigzag edge. When θ = 0°, the x−y spatial coordinate system
overlaps with the ZZ−AC lattice coordinate system. In this
case, the strength of the armchair plane is determined by the
loading along the zigzag direction. When θ = 30°, the strength
of the zigzag plane is determined by the loading along the
armchair direction. Note that when θ = 0°, the critical bonds
labeled by A1, A2,... form an angle of 30° with respect to the
loading direction; when θ = 30°, the critical bonds are Z1, Z2,...,
which form an angle of 0° with respect to the loading direction.
The stress−strain curves of pristine graphene for several θ
values are shown in Figure 1b. The anisotropic mechanical
properties in other two-dimensional (2D) materials, including
hexagonal boron-nitride (h-BN), fluorographene (CF), and
MoS2, are also plotted in Figure 1c−e, respectively. The
detailed atomic structures of samples along different
orientations are given in Supporting Information Figure 1.
If the breaking strength of an individual C−C bond is σb, we

can determine the stress to break the armchair plane or the
zigzag plane for the loading conditions shown in Figure 1a. By
decomposing the applied stress to its component along the
direction of individual bonds, we derive the critical stresses to
break the zigzag plane (composed of bonds Z1, Z2,... in Figure
1a) as

σ
θ+sin(60 )

b
o

(1)

Similarly, the critical stresses to break the armchair plane
(composed of bonds A1, A2,... in Figure 1a) are

σ
θ θ θ+ + −

2
{cos [cos(30 ) cos(30 )]}

b
o o

(2)

Equation 2 is obtained by resolving the applied stress to bonds
A1, A3,... (forming an angle of 30° − θ with the applied stress)
and to A2, A4,... (with an angle of 30° + θ), respectively. While
more sophisticated nonlinear factors28 can be considered to
capture the strength-orientation dependence of pristine
graphene, eq 1 can capture the strength of several 2D materials
loaded along different directions, as seen in Figure 2a. In
addition, we show in Figure 2b the critical stress to break the
zigzag planes and the armchair planes given respectively by eqs
1 and 2 as θ varies from 0 to 30°. The required stress to break
the zigzag plane and that to break the armchair plane at
different angle θ differ significantly, with the latter being greater
than the former. When applying a load along the armchair
direction, the resolved tensile stress along C−C bonds
perpendicular to the zigzag plane (Z1, Z2, ...) is higher than
that along A1, A2,...bonds. This explains why the strength of the
zigzag plane is lower. Our DFT results of the ideal strength
show the orientation dependence different from the DFT
results of the edge energy from Kim et al.24 This difference
implies that one may need to distinguish the brittle fracture
governed by the ideal strength with that by the edge energy.
Given the strong orientation dependence of the ideal tensile

strength in pristine graphene, we further study the orientation
dependence of the critical crack size during brittle fracture of
precracked graphene. We choose graphene samples with
sufficiently large dimensions in order for reducing the boundary
effects on the simulated fracture mode and load. The adaptive
intermolecular reactive empirical bond order (AIREBO)

Figure 1. Stress strain curves of several pristine two-dimensional materials with the hexagonal lattice while loaded along different directions. (a)
Illustration of loadings applied along different directions and the critical bonds. The graphene lattice is oriented in a way that the angle between the
armchair direction (AC) and the y-axis is θ. Hence, the angle between the zigzag direction (ZZ) and the x-axis is 30° − θ. The load is applied along
x-axis. (b−e) Respective stress−strain curve of pristine graphene, MoS2, hexagonal boron-nitride, and fluorographene subjected to tensile loading
along different orientations.
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potential29 for carbon is used. To facilitate the simulation of
brittle fracture, we adopt a modified switch function parameter
rcc = 1.92 Å (Table 1 in ref 29), beyond which the C−C bond

breaks. It has been previously shown that the stress−strain
behavior of graphene obtained by using this parameter in
AIREBO matches well with first-principles calculations.21 All
MD simulations are performed using the NVT ensemble in
LAMMPS,30 and the system is maintained at 1 K. A constant
time step of 1 fs is used. After structure relaxation, uniaxial
tension (perpendicular to the crack) is applied to the MD
supercell.
We define the orientation of a crack by following the

conventional definition of the chirality of carbon nanotubes and
graphene. The orientation of a single layer graphene is
described by two vectors a1 and a2, and the crack edge is
described by a chiral vector Ch = na1 + ma2. The armchair and
the zigzag directions correspond to Ch = (1,1) and Ch = (1,0),
respectively. We consider the graphene with a central crack of
length 2a and apply loading perpendicular to the crack. We
perform simulations for samples with crack edges along five
directions: Ch = (1,1), (5,8), (2,5), (2,11), and (1,0). Recall
that in Figure 1a, we define θ as the angle between the loading
direction and the zigzag direction, such that θ also represents
the angle between the crack edge and the armchair direction.
The detailed information about chirality of the crack edge and θ
is provided in Table 1.
Figure 3 shows the mechanical behaviors for precracked

graphene stripes (with in-plane dimensions of 100 nm by 75
nm and under periodic boundary conditions in both
directions). The stress fields of σxx from theoretical prediction
(Figure 3a) and MD simulations in precracked graphene stripes
(Figure 3b, 2a = 20 nm; Figure 3c, 2a = 6 nm) under tension
are shown, respectively. MD results in samples with large cracks
match well with theoretical prediction, but the magnitude of
stresses in samples with small cracks show significant deviation
from theoretical prediction. We also plot the stress fields of σxx,
σyy, and σxy from MD simulations for two samples with different
crack lengths in Supporting Information Figure 2. The stress−
strain curves for samples with different initial precrack lengths
(with crack edges all along the armchair direction) are shown in

Figure 2. Theoretical prediction on the strength-orientation relation-
ship and the stress to tear apart the armchair planes and the zigzag
planes in graphene. (a) Failure strength as a function of loading
orientations for several single layer two-dimensional materials; symbols
show DFT calculations and solid lines theoretical predictions from eq
1 (h-BN, hexagonal boron-nitride; CF, fluorographene). (b) The
critical load to break the zigzag plane (composed of bonds Z1, Z2,... in
Figure 1a) and the armchair plane (composed of bonds A1, A2,... in
Figure 1a). The latter is always higher than the former, suggesting
preferred crack extension along the zigzag direction.

Table 1. Crack/Loading Angle, Crack Chirality, and the
Apparent Fracture Resistance ΓG Predicted by the Griffith
Criterion (Obtained through Fitting the Strength versus
Crack Length Curve by Using Equation 3) and ΓMD from
MD Simulations by Calculating the Energy of Free Edges
along Those Particular Chiralities

crack angle θ 0° 7.5° 15.9° 22.5° 30°
chirality Ch (m,n) (1,1) (5,8) (2,5) (2,11) (1,0)
ΓG 15.9 15.1 14.0 13.5 11.0
ΓMD 11.7 12.7 13.1 13.4 11.0

Figure 3. Mechanical behavior of cracked graphene. (a−c) Stress fields of σxx in graphene when the crack is along the armchair direction and loaded
along the horizontal direction. (a) Theoretical prediction with 2a = 20 nm; (b) MD simulation with 2a = 20 nm; (c) MD simulation with 2a = 6 nm.
(d) Stress−strain curves for cracks along the armchair direction and with different initial lengths. (e−i) Fracture strength as a function of crack length
for samples loaded along different directions (solid lines, theoretical results from eq 3; symbols, MD simulations); (e) θ = 0, (f) θ = 7.5°, (g) θ =
15.9°, (h) θ = 22.5°, and (i) θ = 30°.
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Figure 3d. Similar MD simulations are performed for samples
with cracks along other directions. It is noted that the choice of
crack-tip atomic configuration is not unique, which might
influence crack propagation that is sensitive to the local atomic
bonding. To avoid this sensitivity, we keep the crack tip
structure in a self-similar manner so that the crack tip structure
remains the same as crack size changes. This ensures a self-
consistent comparison of cracks with different lengths.
According to the Griffith criterion, the critical fracture stress

σf (i.e., the so-called Griffith stress) for a stripe with a central
crack is given as2,31

σ
ϕ π

= Γ
F

E
a

1
( )f

(3)

where E is Young’s modulus, Γ is the apparent fracture
resistance of the crack plane.31 In brittle materials, Γ is also the
surface energy for 3D materials and edge energy for 2D
materials. In eq 3, F(ϕ) is a geometrical factor given by

ϕ ϕ ϕ πϕ ϕ= − + =⎜ ⎟⎛
⎝

⎞
⎠F W

a
( ) (1 0.025 0.06 ) sec

2
, and

2
2 4

(4)

where W is the width of the stripe with a central crack of length
2a. We plot in Figure 3e− i the calculated Griffith strength as a
function of crack length for samples loaded along different
directions, which correspond in turn to crack angles θ = 0, 7.5,
15.9, 22.5, 30. The dashed lines are fitted to MD results by
adjusting the apparent fracture resistance Γ in eq 3. The arrows
point to the crack size below which the fitting curves deviate
significantly from MD results. Hereafter, the apparent fracture
resistance obtained by fitting eq 3 to the σf versus a curve is
denoted as ΓG, and the edge energy obtained from MD
simulations (by calculating the energy difference for graphene
samples with and without edges) as ΓMD. We shall discuss later
why we do not use ΓMD in eq 3. In Figure 3e, we obtain the
apparent fracture resistance of ΓG = 15.9 J/m2 when the crack is
along the armchair direction (m,n) = (1,1). We note this result
of apparent fracture resistance is close to the experimentally
measured value9 but significantly higher than the edge energy

Figure 4. Orientation-dependent edge energy and failure strain in graphene. (a) The apparent fracture resistance ΓG obtained by fitting to the
Griffith equation and the edge energy ΓMD obtained by comparing the energy difference between samples with and without edges from MD
simulations. (b) MD results of fracture of pristine graphene without crack, showing the atomic structure (right) at the failure point in the stress−
strain curves (left). Both the strength and the strain-to-failure to tear apart the armchair edge (AE) is higher than those to break the zigzag edge
(ZE), implying that initial bond breaking may prefer to start along the zigzag edges where bonding is relatively weaker.

Figure 5. Atomic structures before (first row) and right after (second row) crack extension, showing the crack kinking responses in MD simulations.
(a) Initial crack along the armchair direction (θ = 0) and kinking to the zigzag direction. (b) θ = 15.9°, kinking to the zigzag direction. (c) θ = 22.5°
and kinking to the zigzag direction. (d) θ = 30°, no kinking as the crack is initially along the zigzag direction.
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from first-principles calculations of ∼10 J/m2.32−34 When the
crack length is as small as 6 nm, the theoretical Griffith stress, as
calculated from eq 3, still agrees well with that from MD
simulations. It is apparently higher than MD results when the
crack is shorter than 6 nm. If we regard a good prediction as the
one when the theoretical Griffith stress is no more than 15%
higher than MD results, we see that the Griffith criterion works
well for crack with an initial length as small as 10 nm, as shown
in Figure 3e−i. The difference is significant if the crack
becomes shorter.
While we have shown the predictability of the Griffith

criterion for cracks down to 10 nm in Figure 3, one interesting
observation deserves further study. In contrast to experimental
measurement, the apparent fracture resistance ΓG varies greatly
along different directions. Furthermore, ΓG also differs from the
edge energy ΓMD, as summarized in Table 1 and seen in Figure
4a. At smaller crack orientation θ, the difference between ΓG
(black circles) and ΓMD (red squares) is greater, and it
disappears when the initial crack is along the zigzag direction (θ
= 30°). We further show the edge energy from our DFT
calculations in Figure 4a (blue triangles) and note that ΓDFT
along the armchair direction is 9.0 J/m2 and that along the
zigzag direction it is 12 J/m2. These values are close to previous
DFT calculations.32−34 Despite the difference of edge energies
between MD and DFT results, both methods predict that the
strength required to tear apart zigzag planes (loading along
armchair) is lower than that to break armchair planes (loading
along zigzag).21 The stress−strain behavior of graphene from
MD simulations (from ref 26) shown in Figure 4b shows not
only the strength to tear apart armchair edges is greater than
that to break zigzag edges but also the strain to failure is
dramatically larger. This result, combined with our analysis in
Figure 2, may imply that the Griffith strength for nanosized
cracks is governed by the local properties of bond breaking at
the crack tip instead of the global energy balance of crack
extension, as will be discussed next.
To shed light on the difference between the apparent fracture

resistance ΓG and the edge energy ΓMD, we explore the crack
extension path at the atomic scale. Figure 5a−e illustrates the
precracks with similar initial lengths but along different
orientations. The bottom parts of the figures show the
representative MD snapshots (which correspond to Figure
5a−e, respectively) after these cracks start to propagate. The
salient features of MD simulations are the crack kinking
behavior and the preferred crack path along the zigzag
direction. Deviation of the actual crack path from the initial
crack plane requires a higher crack driving force, that is, strain
energy release rate, to extend the crack. This explains the
apparent difference between ΓG and ΓMD shown in Figure 4. It
is also interesting to see that the cracks may further deviate
from the initial zigzag plane and kink to an alternative zigzag
plane, forming a macroscopically straight yet microscopically
zigzaged crack path, as seen in Figure 5a−e. While graphene
(and probably other type of two-dimensional materials as well)
fails in a brittle manner, the kinked crack dissipates more
energy than the straight one. As a result, the difference between
ΓG and ΓMD is the largest when the initial crack plane lies along
the armchair direction, which deviates most from the zigzag
direction (Figure 5a). As such deviation is reduced (see Figure
5b−e), the difference between ΓG and ΓMD becomes smaller
and eventually disappears (Figure 4) when the initial crack is
aligned with the zigzag direction (Figure 5e). The fact that
these precracks with different orientations all prefer to kink to

the zigzag direction is counterintuitive from the energy
perspective as we expect cracks propagate along the edge
with the lowest fracture resistance. For example, a crack with
the initial armchair edge was thought to extend in a straight
path, which is more energetically favorable rather than the
kinked path along to the zigzag direction. Our MD result hence
suggests that the initiation of crack extension, which determines
the apparent Griffith strength, is governed by the strength of
atomic bonds at the crack tip, rather than the lowest fracture
resistance ΓMD, as the critical stress to tear apart zigzag planes is
the lowest (as demonstrated in Figure 2).
The difference between ΓG and ΓMD, combining with the

preference of crack growth along the zigzag direction where
strength is lower, raises the question why the Griffith criterion
works well at large cracks, that is, 2a > 10 nm, but not for small
ones. Indeed, both the Griffith theory and the theory of
maximum crack−tip strength give the same dependence of far-
field fracture stress on crack length, if a crack is sufficiently long
and accordingly the Inglis solution35 of stress concentration is
close to the stress field given by a sharp Griffith crack. For a
crack of length 2a, the local maximum tensile stress at the crack
tip σlocal from the Inglis solution is known as

σ
ρ

σ= + ∞

⎛
⎝⎜

⎞
⎠⎟

a
1 2local

(5)

where σ∞ is the far-field tensile stress perpendicular to the crack
plane, and ρ is the crack root radius. Since a≫ ρ, when 2a > 10
nm, we have

ρ
σ σ σ≅ ≤∞

a
2 local c

(6)

Here σc is the strength of the crack−tip bond. Hence, the Inglis
solution gives the far-field fracture stress of a sample with a
central crack of length 2a as

σ
σ ρ

=∞
−a

4
( )c

2
0.5

(7)

The above equation, as derived from the maximum strength
of the crack-tip bond, has the same functional dependence on
crack length as the Griffith criterion

σ
π

= Γ −E
a( )f

0.5

(8)

We see from eqs 7 and 8 that both the theory of maximum
crack-tip strength and the Griffith theory give the same
prediction for large crack size when the Inglis solution of stress
concentration35 at a crack tip remains valid, and the bond
strength times the square-root of the crack length is a material
constant. In the Inglis theory, the constant involves atomic
strength and atomic size. In the Griffith theory, the constant
involves Young’s modulus and surface energy.31,35,36 The two
fracture criteria, that is, eqs 7 and 8, start to deviate from each
other when the crack length becomes smaller than ∼10 nm.
This is because for such small crack sizes, the “Inglis crack”, that
is, an elliptic hole, has a relatively small ratio between its long
and short axes and thus is not equivalent to a sharp Griffith
crack, as illustrated by the stress fields in Figure 3 and
Supporting Information Figure 2.
Because the Griffith criterion of eq 3 cannot be directly

applied to predict the fracture strengths of samples with cracks
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less than 10 nm, we propose the following fracture criterion in
terms of failure strain ϵf for nanosized cracks:

ϕ
α

π
ϵ = Γ

F E
E

a
1
( )f

(9)

This failure strain criterion is based on the strength criterion
in eq 3 with an effective geometrical correction, accounting for
the fact that a small Inglis crack-like defect is no longer a strictly
Griffith sharp crack. The coefficient α in eq 9 is a fitting
parameter for cracks along the armchair direction. Here α is
equal to 3 and remains constant for prediction of the failure
strain of cracks along other directions. Note that there might
exist nonlinear effects, as periodically placed cracks may interact
with each other in relatively small MD systems, and give rise to
variation in α for long cracks in periodic arrays. Figure 6 shows
the predictions from eq 9 well match MD simulations even for
samples with small crack sizes down to 2 nm.
As large area graphene samples (or other 2D materials) are

being increasingly used for reinforcing components in nano-
composites,37−39 nano to microscale defects could become a
significant strength-limiting factor. There is currently a critical
need to understand the strength and failure strain of those
defective 2D materials. On the basis of MD simulations, we find
that predictions from the Griffith criterion for the strength of
precracked graphene match well with MD simulations until a
crack size is less than 10 nm. However, the difference between
the Griffith stresses and MD results can be as large as 15%
when the crack size is below 10 nm. To address this issue, we
propose eq 9 that captures the failure strain for samples with
crack size as short as 2 nm. Our MD simulations also reveal that
the precrack tends to kink along the zigzag direction. As a result
of crack kinking, the apparent fracture resistance, which is
determined by fitting to the Griffith criterion of eq 3, is higher
than that from direction MD calculations of edge energy. Crack
kinking is likely governed by the strength of atomic bonds, that
is, the critical stress at the crack tip to tear apart graphene,
instead of the edge energy. Our work on the breakdown crack
size for the Griffith criterion is valuable for the future analysis of
brittle fracture in 2D materials containing nanoscale defects.
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