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Applicability of the Griffith criterion �A. A. Griffith, Philos. Trans. R. Soc. London, Ser. 221, 163 �1920�;
S. Zhang, S. L. Meilke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Phys. Rev. B 71,
115403 �2005�� for predicting the onset of crack extension in crystal lattices is systematically evaluated using
atomistic and multiscale simulations with a focus on the effects of crack size and lattice discreteness. An
atomistic scheme is developed to determine the true Griffith load defined by the thermodynamic energy balance
of crack extension for both finite-sized and semi-infinite crack models. For a model monolayer lattice, we
identify a characteristic crack length �about ten lattice spacings� below which the Griffith fracture stress
markedly overestimates the true Griffith load. Through a stability analysis of crack-tip bond separation, the
athermal �nonthermally activated� loads of instantaneous fracture are determined, thereby yielding the esti-
mated lattice trapping range. Our simulations show that the strength of lattice trapping depends on the inter-
action range of the interatomic force fields. Using the reaction pathway exploration method, we determine the
minimum energy paths of bond breaking and healing at a crack tip, giving a more precise estimate of the lattice
trapping range. The activation energy barriers governing the rate of kinetic crack extension are extracted from
the minimum energy paths. Implications concerning the distinction between the athermal and Griffith fracture
loads are discussed. Based on these results, a general criterion is established to predict the onset of crack
growth in crystal lattices. In addition to taking into account the lattice trapping effect, this criterion is appli-
cable to a large spectrum of crack sizes.
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I. INTRODUCTION

Predicting the failure strength of nanostructured materials
often involves quantum mechanical calculations or atomistic
models with empirical force fields. While these numerical
methods have been useful to elucidate the failure mecha-
nisms at the atomic level, their prohibitive computational
cost becomes a major concern for specimens of realistic size.
In contrast, the fracture criteria1,2 established within the
framework of continuum fracture mechanics have been
widely used to predict the critical conditions for the onset of
crack extension in continua. If such continuum-based frac-
ture criteria were applicable to nanostructured materials, the
aforementioned computational burden could often be
avoided. Thus, it is both fundamentally and practically criti-
cal to evaluate the applicability of these fracture criteria to
crystal lattices with the consideration of flaw size and lattice
discreteness.

The fundamental fracture criterion for brittle continua is
the energy-balance criterion by Griffith,1,3 which holds when
there is no generation or motion of dislocations or other dis-
sipation mechanisms, such as void nucleation. The Griffith
criterion states that a crack meets the critical growth condi-
tion when the net change in the total energy of the system
�E vanishes upon crack extension by an infinitesimal dis-
tance �a:

�E = �G − 2�s��a = 0, �1�

where G is the elastic energy release rate and �s is the sur-
face energy density which measures the fracture resistance of
the material. For a model system with a central crack of

length 2a embedded in an infinitely large, linear elastic me-
dium, subject to remotely applied uniform tension, the
energy-balance criterion yields a critical stress1

�G� = �2Y�s/�a �2�

for plane-stress condition, where Y denotes Young’s modu-
lus. To distinguish the critical stress given by Eq. �2� from
the true Griffith load given by the energy-balance criterion of
Eq. �1�, the critical stress determined by Eq. �2� is hereafter
referred to as the Griffith fracture stress.

The Griffith fracture stress has been widely used to pre-
dict the onset of crack extension in continua, yet it suffers
deficiencies when applied to specimens with nanosized
cracks. For extremely short cracks �a→0�, the Griffith frac-
ture stress may exceed the theoretical strength �th of the
perfect lattice, which, of course, is nonphysical. In address-
ing this issue, Gao et al.4 suggested that a characteristic
crack length can be identified as a*�Y�s /�th

2 , below which
the Griffith fracture stress overestimates the true fracture
stress and the material becomes flaw insensitive. Pugno and
Ruoff5 developed a quantized fracture mechanics �QFM�
theory, where the classical stress intensity factor is redefined
by considering an infinitesimal crack extension at the crack
tip. With a predetermined geometric parameter, the QFM
theory predicts satisfactory results on the fracture strengths
of nanostructured materials. Recently, Mattoni et al.6 pro-
posed a modified Griffith condition, where Young’s modulus
and surface energy density are taken to be strain dependent.
Despite yielding an improved agreement between the pre-
dicted Griffith fracture stress and the failure load, these
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modifications were proposed without making connections to
the energetics of brittle fracture on the atomic level.

From an atomic point of view, brittle crack extension in
crystal lattices involves sequential bond breaking at the crack
tip. A complete understanding of the fracture process at the
nanoscale requires detailed atomic-level studies to elucidate
the energetics governing this sequential bond-breaking pro-
cess. Consider a straight crack in a two-dimensional �2D�
lattice subject to mode I loading characterized by the stress
intensity factor KI, the energetics governing crack growth
can be generically characterized by a load-mediated energy
landscape of a unit bond-breaking process, as shown in Fig.
1. The final configuration �black closed circle� on the energy
landscape differs from the initial one �open circle� in that the
crack tip is advanced by one lattice spacing. These two con-
figurations correspond to two local energy minima, and are
separated by an energy barrier representing an intrinsic lat-
tice resistance against bond breaking. The state with the
highest energy is known as the saddle point �also as the
transition state, yellow closed circle�. The energy difference
between the two local energy minima defines the thermody-
namic driving force for crack-tip bond breaking �i.e., crack
extension�, while the energy difference between the saddle
point and the first �second� local energy minimum gives rise
to the activation energy barrier �AEB� governing the kinetic
rate of bond breaking �healing�. Starting from the Griffith

load KI
G at which these two local energy minima are isoen-

ergetic, with an increasing applied load, the energy landscape
becomes tilted toward the final configuration with a reduced
energy barrier against bond breaking. When the applied load
reaches an athermal limit KI

+ at which the energy barrier
vanishes,7 the bond breaks spontaneously without the aid of
thermal activation. Similarly, with a decreasing applied load,
the energy landscape becomes tilted toward the first configu-
ration, and an athermal limit KI

− can be identified at which
the bond heals spontaneously. At the Griffith load KI

G, a finite
lattice-resistance barrier exists between the isoenergetic
states, which could trap the crack tip at either state, mani-
festing the lattice trapping effect.8 The lattice trapping
strength is defined by S��KI

+−KI
−� /KI

G, which characterizes
the differences between the athermal limits in terms of the
Griffith load for crack extension and healing.

The lattice-trapping effect may also be viewed as the con-
sequence of the nonlinearity of the surface energy as the
crack extends by less than one lattice spacing.8 In contrast,
continuum fracture mechanics assumes that the surface en-
ergy increases linearly with crack length, and is, thus,
blinded to this nonlinear variation within one lattice spacing.
Atomistic simulations9–20 have been used to quantify the
lattice-trapping strengths for different materials. A general
conclusion from these studies is that lattice-trapping strength
depends on the characteristics of the interatomic potentials,
particularly the interaction range. By considering the forces
exerted on the first several atomic bonds at the crack tip,
Curtin21 derived an analytical formula for the lattice-trapping
strength in terms of the lattice properties and the character-
istics of the empirical interatomic potentials.

In this paper, we systematically evaluate the applicability
of the Griffith criterion for predicting the onset of crack ex-
tension in crystal lattices. Using a monolayer crystal lattice
with a preexisting crack as a model system, the true Griffith
load is determined by numerically identifying the load at
which the energy-balance criterion of Eq. �1� is met for the
unit advancement of a crack by one lattice spacing. We iden-
tify a characteristic crack size below which the Griffith frac-
ture stress calculated by Eq. �2� markedly overestimates the
true Griffith load. In addition to the athermal loads, the
lattice-trapping strengths are determined for different empiri-
cal force fields. Using reaction pathway calculations,22–24 we
compute the load-mediated minimum-energy paths �MEPs�
for the unit processes of crack-tip bond separation, thereby
yielding the load-mediated AEBs against crack-tip bond
breaking and healing.

The rest of the paper is organized as follows: Section II
presents the numerical models and methodologies adopted in
the simulations. Section III reports atomistic determinations
of the true Griffith load and the lattice-trapping strength for
the given empirical force fields. The load-mediated MEPs of
the unit bond-breaking process computed by the nudged
elastic band �NEB� method are also reported along with the
corresponding AEBs. Discussions and concluding remarks
are given in Secs. IV and V, respectively.

II. MODELS AND METHODOLOGIES

A. Models

A hexagonal monolayer crystal lattice containing either a
finite-sized crack or a semi-infinite crack is adopted as our

FIG. 1. �Color online� Load-mediated energy corrugation of a
unit bond breaking and/or healing process at the crack tip. Within a
range of applied load �KI

−�KI
1�KI

G�KI
2�KI

+�, the crack tip can
be stabilized at two local energy minima �denoted by an open circle
and a black closed circle, respectively� separated by a saddle point
�denoted by a yellow closed circle�. At the Griffith load KI

G, these
two states are isoenergetic. Increasing the applied load from KI

G

causes the energy surface to tilt toward the second configuration
�closed circle� with a reduced activation energy barrier �AEB�
against bond breaking. A thermal limit KI

+ can be identified at which
the AEB against bond breaking vanishes and bond breaking occurs
without the aid of thermal activation. Similarly, decreasing the ap-
plied load from KI

G causes the energy surface to tilt toward the first
configuration �open circles� with a reduced AEB against bond heal-
ing. A thermal limit KI

− can be identified at which the AEB against
bond healing vanishes.
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simulation model, as shown in Fig. 2. Such 2D hexagonal
lattices are, for example, found in graphene sheets and, in
curved form, carbon nanotubes. The finite-sized model �see
Fig. 2�a�� is utilized to mimic the model system of a central
crack embedded in an infinite elastic domain, where the
overall dimensions of the lattice must at least be one order of
magnitude larger than the crack length. For long cracks, ato-
mistic simulations become computationally prohibitive. In
such cases, a multiscale method coupling atomistics and fi-
nite elements is adopted. A detailed description of this cou-
pling method can be found elsewhere.3,25,26 Displacement
boundary conditions are imposed on the edges of the lattice
to simulate mode I crack extension. The configurational
and loading symmetries allow us to use twofold sym-
metry in the simulations. The limited memory Broyden-
Fletcher-Goldfarb-Shanno �BFGS� geometry optimization
algorithm27 is used to determine the minimum-energy con-
figurations of the coupled and all-atom models. The stress
state of the monolayer lattice is obtained by summing all
forces acting on the edges divided by the edge length. Note
that for the 2D monolayer lattice, stress and Young’s modu-
lus have the units of surface tension rather than pressure.

To model long cracks that extend self-similarly, a size-
reduced model consisting of a small circular-shaped domain
cut from the crack tip is adopted �see Fig. 2�b��. The domain
size is chosen such that its outer boundary falls in the
K-dominant zone. The relatively small domain size makes
all-atom simulations computationally feasible. Mode I load-
ing is imposed by initially assigning all the atoms the dis-
placement field given by the crack-tip asymptotic solution
with a specified KI

app. Atoms close to the outer boundary are
held fixed, and the BFGS algorithm is employed to relax
the atomic geometry, thereby obtaining the local energy-
minimum configurations at applied loads.

B. Empirical force fields and hyperelasticity

The fracture mechanisms of the monolayer lattice are fun-
damentally governed by the characteristics of the interatomic

force field. For the fracture of a monolayer graphene sheet,
the second-generation Tersoff-Brenner �TB-G2� potential28

has often been adopted to describe C-C covalent bonding,
which takes the following form:

E = �
i

�
j�i

fc�rij��VR�rij� + bijV
A�rij�� , �3�

where E is the total energy of the atomic system, rij is the
distance between atoms i and j, VR and VA are the pairwise
repulsive and attractive interactions, respectively, bij is a
bond-order function �which has a complicated dependence
on the bond angles and bond lengths involving atoms i and
j�, and fc is a cutoff function that reduces to zero for inter-
actions beyond 2.0 Å. It should be noted that the TB-G2
potential leads to a spurious force-separation relation in that
the interaction force is artificially raised for bond length be-
tween 1.7 and 2.0 Å due to the functional form of the cutoff
function in the potential.29 For the failure analysis of carbon
nanotubes or graphene sheets,3,30 a modified TB-G2 poten-
tial, denoted by MTB-G2,31 has frequently been adopted,
where the cutoff function is removed but includes C-C inter-
actions only for those atom pairs that are less than 2.0 Å
apart in the initial, undeformed configurations. The pair table
is not updated throughout the simulation.

To study the influence of the interaction range of poten-
tials on lattice-trapping strength, we also use a potential
based on the many-body formalism of the MM2/MM3
model:

E = �
bonds

Vs�rij� + �
angles

V	�	 jik,rij,rik� . �4�

The pair-body potential in the expansion is characterized by
two matched quadratic functions:

Vs�r� = �
1
2ka�r − r0�2 − � �r � rc�

1
2kd�r − rf�2 �rc � r � rf�

0 �r � rf� .
	 �5�

The parameters in the quadratic functions are chosen so that
the potential is piecewise continuous and differentiable. The
interatomic force for this potential is then bilinear. In the
potential, r is the stretched bond length; r0=1.42 Å is the
equilibrium bond length; rc and rf are the critical bond
lengths at which bond force peaks and vanishes, respec-
tively; ka and kd characterize, respectively, the ascending and
descending slopes of the bilinear force-separation curve; and
� is the potential energy stored in the bond at equilibrium
bond length, which is also equal to the area underneath the
force-separation curve. The surface energy density is then
�s=� /2d0, where d0=�3r0 is the lattice spacing. The three-
body potential is a harmonic angle-bending energy term:

V	 =
1

2
k	�	 − 	0�2, �6�

where 	0=120° is the equilibrium angle and k	 characterizes
the angle-bending stiffness.

To facilitate the study of the lattice-trapping effect, four
sets of parameters for the MM2/MM3 potential are adopted,
where rf �hence the descending slope kd and the bond energy

FIG. 2. �Color online� Monolayer lattice models. �a� The multi-
scale model of a finite-size crack embedded in an infinite medium.
Due to the configurational and loading symmetries, only half of the
geometry is considered with an appropriately imposed symmetry
condition. The crack tip is encompassed by an atomistic region,
which is, in turn, embedded in a continuum domain discretized by
finite elements. The continuum domain is only partially shown in
the figure. �b� The model of a semi-infinite crack embedded in the
local K field. Atoms at the outer boundary are held fixed, while all
the other atoms are set free.
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�� varies, while all the other parameters are the same �rc
=1.524 Å, ka=69.3 nN/Å, and k	=5.684 nN�. These four
potentials are denoted by I, II, III, and IV, respectively. Note
that ka and k	 uniquely determine Young’s modulus and Pois-
son’s ratio of monolayer lattices. Their values are chosen
such that the resulting Young’s moduli given by these poten-
tials are comparable to that of a graphene sheet modeled by
the Tersoff-Brenner potential.

The interaction range of a potential, characterized by a
dimensionless parameter 
��rf −r0� / �rc−r0�, determines the
lattice-trapping strength. It was pointed out21 that for 

�
0, the interaction range of the potential is short, while for

�
0, the interaction range of the potential is long, where

0 is a constant depending only on the types of the crystal
lattice but not on the potential, and can be determined by

0=2� /ka�G

2 , where �G is the elongation of the crack-tip
bond at the true Griffith load. For triangular lattices 
0
=3.68, and for hexagonal lattice 
0=7.85. Here, 
 is chosen
to be 1.0, 2.5, 4.0, and 8.0, respectively, for these four MM2/
MM3 potentials. Hence, the first three potentials are of short
range, while the forth one is of long range. Correspondingly,
the parameter rf for the four potentials is rf

I =1.524 Å, rf
II

=1.679 Å, rf
III=1.835 Å, and rf

IV=2.249 Å, respectively, and
the bond energy is �I=0.233 eV, �II=0.581 eV, �III

=0.931 eV, and �IV=1.862 eV, respectively. For TB-G2, rf
coincides with the value of the cutoff in the cutoff function
�rf

TB-G2=2.0 Å�, and it is a short-range potential since 

=1.46, while for MTB-G2, rf

MTB-G2=� and, hence, is a long-
range potential. The bond energy is 5.120 eV for TB-G2 and
4.908 eV for MTB-G2.

It should be noted that these MM2/MM3 potentials have
zero out-of-plane bending rigidity, which is nonphysical.
However, this is not of concern since in the present study
crack extension is confined within the plane of the mono-
layer. These simple MM2/MM3 potentials do not accurately
represent any real materials, but they present clear advan-
tages in studying the effects of interatomic potentials on the
energetics of brittle fracture.

The macroscopic material constants resulting from these
potentials can be derived via the standard Cauchy-Born
rule32 following a lengthy but otherwise straightforward
procedure.33,34 The derived Young’s modulus Y and Pois-
son’s ratio 
 are 24.30 nN/Å and 0.397, respectively, for the
TB-G2 and MTB-G2 potentials, and 28.03 nN/Å and 0.299,
respectively, for the MM2/MM3 potentials. It should be
noted that the hexagonal lattice is isotropic at infinitesimal
deformation, but anisotropic at finite deformation.3,35 Unless
otherwise mentioned, Young’s modulus and Poisson’s ratio
are referred to as the values at infinitesimal deformation.

C. Minimum-energy paths of bond breaking
and healing

A full understanding of the energetics governing crack
growth or healing in brittle fracture entails probing the load-
mediated energy landscape at the atomic level, as shown in
Fig. 1. We apply the NEB method22–24 to find the MEPs and
calculate the associated AEBs for the unit process of bond
breaking at a crack tip. The original NEB method has been

generalized to study a wide range of mechanics problems
involving thermally activated processes, such as collapse of
carbon nanotubes,36 crack-tip dislocation nucleation,17 slip
transmission at the interface,37 etc.

Prior to the NEB calculation, two local energy minima
need to be identified, which correspond to the atomic equi-
librium configurations before and after the breaking of the
first bond at the crack tip. Thus, these two configurations can
be considered as two distinct states along the fracture path.
Taking the two configurations as fixed end states, an elastic
band is constructed between them through a linear interpola-
tion to create several equally spaced intermediate configura-
tions �replicas�. Nudged relaxation of the elastic band via the
projected velocity Verlet method yields a discrete MEP. For
the 2D atomic monolayer, the MEP is a continuous path in a
2N dimensional configuration space �where N is the number
of free atoms� along which the atomic forces are zero at any
point in the 2N−1 dimensional hyperplane perpendicular to
the path.38 The calculations are considered converged when
the force on each replica perpendicular to the path is less
than 0.005 eV/Å. A continuous MEP is generated by poly-
nomial fitting of the discrete MEP.22 AEBs against local bond
breaking and bond healing can be extracted from the saddle
points �the energy maximum along the path� on the MEPs.
The applied loads at which the AEBs vanish are identified as
the athermal loads for bond breaking or bond healing. It is
understood that the lattice-trapping effect is caused by lattice
discreteness and is independent of crack length. Thus, the
semi-infinite crack model can be effectively used for the
NEB calculation, though the NEB method is also applicable
to the finite-sized crack model. In the NEB calculations, the
K-field load is imposed by the displacement-control method,
where boundary atoms are positioned according to the
K-field displacement. To obtain a valid MEP, one needs to
ensure that the positions of the boundary atoms are the same
for all the replicas along the elastic band.

III. RESULTS

A. True Griffith loads

For very short cracks of length on the order of several
lattice spacings, the Griffith fracture stress given by Eq. �2�
may significantly deviate from the true Griffith load deter-
mined by the Griffith energy-balance criterion of Eq. �1�.
Computationally, the true Griffith load, denoted as �G, can
be determined by finding the critical stress at which the net
change of the total energy of the system vanishes upon unit
crack extension by one lattice spacing,

�E��G� = E�a;�G� − E�a + d0;�G� = 0, �7�

where E�a ;�G� and E�a+d0 ;�G� denote the total energy of
the system at the true Griffith load �G for crack lengths a and
a+d0, respectively.

1. Finite-sized crack model

To determine the true Griffith load for a finite-sized crack
as shown in Fig. 2�a�, we consider two configurations with
the crack lengths 2a �denoted as configuration A� and 2a
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+2d0 �denoted as configuration B�, respectively. These two
configurations can be regarded as two consecutive states
along the fracture path. The two configurations are stretched
to fracture under displacement-controlled loading, yielding
an energy-strain curve and a stress-strain curve. The total
energy of each system is the sum of the elastic strain energy
and surface energy. At the stress-free state, the difference in
the total energy of these two configurations is solely due to
their different surface energies. Under the same applied load,
the strain energies of the two systems differ due to their
different crack lengths and, thus, their different effective
stiffness. However, this difference in strain energy will
change with increasing load; at a critical applied stress, it
compensates with the difference in surface energy, and the
total energies of the two configurations become the same;
namely, configurations A and B are two isoenergetic states
along the fracture path under the same applied load. By defi-
nition, this critical applied stress corresponds to the true
Griffith load �G.

A series of calculations were performed with crack
lengths 2d0�a�100d0 to determine the true Griffith load
for TB-G2. Cracks were created by removing a row of
atomic bonds, although this is not a chemically realistic
model for a crack.39 A more appropriate model for a crack is
obtained by removing a row of atoms.3,30 Since the present
focus is on the mechanical aspects of the system and we are
considering longer cracks, the chemical constraint is tempo-
rarily not taken into account for numerical convenience. To
model the extension of a central crack embedded in an infi-
nite medium, the dimensions of the simulation model should
be sufficiently large to suppress the boundary effects. Thus,
for crack length greater than 20 lattice spacings, the coupling
method3,25 is adopted to reduce the computational cost. Fig-
ure 3 illustrates the search for the true Griffith load for a
crack with length of 10d0 using the TB-G2 potential. At zero
strain �stress-free state�, the energy difference of these two
states �E�EA−EB is finite and solely due to the surface
energy difference. With an increasing applied strain �, the

magnitude of the energy difference of the two states mono-
tonically decreases �Fig. 3�a��. The strain at which the energy
difference vanishes is identified as the Griffith strain, de-
noted by �G, and the corresponding applied load in the
stress-strain curve is the true Griffith load �G �Fig. 3�b��.
Beyond the true Griffith load, the difference in the strain
energies stored in these two stretched configurations exceeds
the difference in the surface energies, and �E continues in-
creasing until fracture occurs.

2. Semi-infinite crack model

For the semi-infinite crack model depicted in Fig. 2�b�,
the true Griffith load for mode I fracture can also be deter-
mined based on the energy-balance criterion of Eq. �7�. At a
given KI

app, all the atoms in the system are initially posi-
tioned according to the displacement field of the crack-tip
asymptotic solution:


ux

uy
� =

KI
app

2�
� r

2�
�� − cos 	�
cos�	/2�

sin�	/2� � , �8�

where r and 	 are defined with the origin O at the center of
the first bond at the crack tip �see Fig. 4�, � is the shear
modulus of the lattice, and �= �3−
� / �1+
�. Atoms about
3 Å from the outer boundary are held fixed, while the re-
mainder of atoms are relaxed using the BFGS algorithm,
thereby yielding an optimized configuration A with a mini-
mized total system energy EA. Note that configuration B can
be regarded as a replica of A at the same applied load, but
with the first bond at the crack tip broken. To search for
configuration B using geometry optimization, one needs to
make an initial guess that is sufficiently close to the local
energy minimum corresponding to configuration B. Other-
wise, the BFGS search would converge to configuration A.
While there are several schemes that can be used to obtain an
initial guess sufficiently close to configuration B, the follow-
ing algorithm is found most effective, and thus used in our
simulations. With the same starting configuration, all atoms

FIG. 3. �Color online� Atomistic determination of the true Griffith load for the finite-sized crack model �2a=10d0�. TB-G2 is used in the
simulations. �a� The difference in the total energy �E between configurations A and B as a function of the applied strain �. The Griffith strain
�G is identified at which �E vanishes. �b� The stress-strain curve for configuration A. The critical stress corresponding to the Griffith strain
is identified as the true Griffith load �G.
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are positioned according to the displacement field described
by Eq. �8�, but with a reference origin O� that is located one
lattice spacing ahead of the origin O. The free atoms in the
system are then relaxed, yielding an intermediate optimized
configuration B� with a total free system energy EB� . By us-
ing the new origin O�, the local opening displacement im-
posed on the first bond at the crack tip is much larger than
that if the origin O were otherwise used. As a result, the first
bond in configuration B� is broken within a certain range of
applied KI

app. Note that configurations A and B� are subjected
to different boundary conditions since the applied displace-
ments on the boundary atoms are based on different origins,
even though the magnitudes of KI

app are the same for both
cases. We then change the positions of the fixed atoms at the
boundary of configuration B� according to the asymptotic
displacement field with the reference origin O, yet do not
reposition the free atoms in the system. Further relaxation of
the system B� under the newly imposed boundary condition
gives rise to a relaxed configuration B with a total energy EB.
This scheme effectively traps the crack tip at the second
energy minimum, i.e., configuration B, for a range of applied
load except for MTB-G2. Figure 4�a� shows an example of
the �overlapped� lattice structures of configurations A and B
at a certain applied load.

Without updating the pair table in the simulations using
MTB-G2 �reflecting its infinite interaction range�, we had
difficulties finding configuration B. To resolve this difficulty,
the pair table for MTB-G2 is updated with a sufficiently
large cutoff radius so that the modified potential is still of
long range, i.e., 
�
0. This treatment introduces negligible
changes to the bond energy of MTB-G2. Therefore, the en-
ergetics closely approximates that of MTB-G2.

A comparison between EA and EB suggests the relative
stability of configurations A and B. If EA�EB, it indicates

that under the applied load KI
app configuration A is energeti-

cally favored, and hence, the applied load is less than the
Griffith load, i.e., KI

app�KI
G; on the other hand, if EA�EB,

configuration B is energetically favored and KI
app�KI

G. Ad-
justing the applied load eventually leads to the Griffith load
such that EA=EB. To reduce the search range, one can first
estimate an approximate Griffith load, and then perform the
numerical search. Specifically, using the relationship be-
tween the critical stress intensity factor Kth

G and the energy
release rate GI= �Kth

G�2 /Y for linear elastic materials, and note
that the critical energy release rate is twice of the surface
energy density �s, one has

Kth
G = �2Y�s. �9�

Figure 4�b� shows the relative energetics of the two con-
figurations for potential II, where the horizontal axis KI,N is
the applied K load normalized by 2��r0. From hereafter, the
subscript N means normalized value unless otherwise men-
tioned. The system energy at the true Griffith load is used as
the reference energy for the energy of states at other applied
loads. The applied load at which the two curves intersect is
identified as the normalized Griffith load KG,N.

B. Crack-size effect

Table I lists the true Griffith load �G determined by Eq.
�7� and the Griffith fracture stress �G� from Eq. �2� for the
TB-G2 potential. We found that �G� is markedly larger than
�G for crack size less than 10d0. As the crack size increases,
the difference in these two loads becomes negligibly small.
Such small difference may be partially due to either the com-
putational precision, the anisotropy of the lattice at finite
strain, or the nonlinearity of the material. The coupling be-
tween the atomistics and the finite element scheme may also
account for some of the difference. The observed crack-size
effect arises from crack geometry, and should be independent

TABLE I. Comparisons between the true Griffith load �G, the
Griffith fracture stress �G� , and the fracture load �athermal load� � f

for the TB-G2 potential. For cracks of length longer than 10d0, the
difference of �G and �G� becomes insignificant. The ratio � f /�G is
nearly constant, indicating that lattice-trapping effect is independent
of crack length. In the table, the crack length has a unit of lattice
spacing, while the stress has a unit of nN/Å.

Crack length �G �G� � f � f /�G

4 2.13 2.60 2.79 1.31

6 1.79 2.01 2.37 1.32

8 1.60 1.70 2.09 1.31

10 1.45 1.50 1.92 1.32

12 1.34 1.36 1.78 1.33

14 1.25 1.26 1.65 1.32

16 1.16 1.18 1.54 1.33

50 0.64 0.67 0.84 1.31

100 0.45 0.46 0.59 1.31

200 0.32 0.33 0.42 1.31

FIG. 4. �Color online� Atomistic determination of the true Grif-
fith load for potential II using the semi-infinite crack model. �a� The
local energy-minimum configurations at the true Griffith load.
These two configurations are overlapped; the green lattice stands
for configuration A and the purple lattice for configuration B. Con-
figuration B differs from A in that the bond at the crack tip is
broken. �b� The relative energetics for configurations A and B as a
function of the applied load. The energy at the Griffith load is taken
as the reference. The red squares represent the energy state A, while
the blue circles the energy state B. The intersection of these two
curves identifies the true Griffith load. For a load less than the
Griffith load, state A is energetically favored, while for a load larger
than the Griffith load, state B is energetically favored.
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of interatomic potentials, as verified by our studies using
other potentials. Hence, we conclude that the characteristic
length a*�10d0 below which the Griffith fracture stress
given by Eq. �2� becomes inaccurate is generally valid to any
elastic crystal.

Table I also lists the fracture strengths � f, defined as the
critical stress of fracture initiation in the energy minimization
of the system at a prescribed load, as detailed in the succeed-
ing section. Evidently, the fracture strengths are much larger
than the corresponding Griffith loads, suggesting appreciable
lattice-trapping effects, which will also be discussed in the
succeeding section. We note that the ratio � f /�G is almost
constant for all the potentials ��1.3 for TB-G2 as shown in
Table I, for example� and the range of the crack length con-
sidered, which indicates that the lattice-trapping strength is
independent of crack length.

In Table II, we list the true Griffith loads for all the po-
tentials considered, along with the theoretically predicted
Griffith loads based on Eq. �9�. For different potentials, the
true Griffith load is fairly close to the theoretical predictions,
indicating that nonlinearity plays a negligible role on the
Griffith load. We also note that the true Griffith load deter-
mined for the semi-infinite crack model is consistent with
that for the finite-sized model. This consistency can be seen
from the relation KG
�G

��a for long cracks.

C. Lattice-trapping effect

The athermal limits can be approximately determined by
the stability analysis of crack-tip bond separation. Since the
lattice-trapping strength is independent of crack size, the
semi-infinite crack model can be effectively utilized for such
calculations. From the true Griffith load, we increase the ap-
plied load incrementally and perform energy minimization at
each load. We find that at a critical load KA, which is above
KG, configuration A can no longer be stabilized, manifested
by the fact that the BFGS relaxation yields configuration B.
Similarly, a critical load KB, which is below KG, can be
found at which configuration B becomes unstable. Note that

KA always underestimates the true athermal load K+, and KB
always overestimates K−. This can be understood as follows.
When the applied load is fairly close to the athermal limits
K+ �or K−�, the energy well trapping configuration A �or B� is
so shallow that the AEB is very small. Thus, in the course of
relaxing an initially guessed state A �or B�, the shallow en-
ergy well may not be able to trap the crack tip, and the
system would then relax to state B �or A�. As a result, using
this algorithm, the lattice trapping strength determined by
�KA−KB� /KG is a lower limit of �K+−K−� /KG.

The calculated KA and KB are listed in Table II along with
the lattice-trapping strength. Of particular note is the effect
of potentials. For the MM2/MM3 potentials, our simulations
show that the lattice-trapping strength monotonically de-
creases with increasing interaction range of the potential and
becomes negligibly small for long-range potentials. This ob-
servation agrees with the previous studies.9,10,21 Specifically,
for the three short-range MM2/MM3 potentials �I, II, and
III�, the athermal limits KA governing bond breaking are the
same, while the athermal limit KB governing bond healing
monotonically increases with increasing interaction range of
the potentials. The athermal limit KA for potential IV is about
5% larger than that for the other three MM2/MM3 potentials.
These observations can be understood based on crack-tip
bond instability. In general, the crack-tip bonds are subject to
an extension force exerted by the surrounding lattice. The
bonds themselves also yield a restoring force at a given bond
length. Occurrence of bond instability is a result of the com-
petition between these two forces. For short-range potentials,
the “one-atom core” assumption of Thomson et al.40 holds,
under which the bond behind the crack tip yields a vanishing
restoring force when the restoring force of the crack-tip bond
reaches its peak, fP. Under this condition, the crack-tip bond
becomes locally unstable to an infinitesimal extension when
the stretching force exerted to the crack-tip bond by the sur-
rounding lattice reaches the peak force. Since the peak forces
for the three short-range MM2/MM3 potentials are all the
same, therefore the athermal limits KA are all the same. For
long-range potentials, however, the bond behind the crack tip
also supplies some additional restoring force when the first

TABLE II. The atomistically determined true Griffith load KG,N, the theoretical Griffith load KG,N� pre-
dicted by Eq. �9�, and the critical loads KA,N and KB,N at which configurational instability occurs. All the
loads are normalized by 2��r0. For each of the four MM2/MM3 potentials, the values for KG,N and KG,N� are
the same, while for TB-G2 and MTB-G2, the difference of these two values is about 1% due to nonlinearity.
For the short-range MM2/MM3 potentials �
�
0=7.85�, the values of KA,N are the same, while the values
of KB,N are approximately proportional to the bond energy � �unit: eV�. Lattice-trapping strengths S approxi-
mated by �KA,N−KB,N� /KG,N for these MM2/MM3 potentials monotonically decrease with increasing inter-
action range of the potentials. For long-range potentials �IV and MTB-G2�, the differences in three loads,
KB,N, KG,N, and KA,N are negligibly small.

Potentials 
 � KG,N� KG,N KA,N KB,N � /KB,N S

I 1.0 0.233 0.080 0.080 0.219 0.029 8.17 2.39

II 2.5 0.581 0.126 0.126 0.219 0.071 8.15 1.18

III 4.0 0.931 0.162 0.162 0.219 0.115 8.10 0.65

IV 8.0 1.862 0.229 0.229 0.232 0.227 8.20 0.02

TB-G2 1.46 5.120 0.434 0.429 0.571 0.225 21.92 0.81

MTB-G2 � 4.908 0.425 0.422 0.426 0.420 11.68 0.01
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bond at the crack tip reaches its peak. Thus, the stretching
force corresponding to local bond instability, i.e., the ather-
mal limit KA, is slightly larger. Oppositely, the crack-tip
bond becomes locally unstable to an infinitesimal contraction
�healing� when the applied load reaches a point at which the
restoring force is larger than the extension force. This ap-
plied load KB depends on the slope of the descending portion
of the potential. For the current setting, since the peak forces
of the MM2/MM3 potentials are all the same, KB appears to
be proportional to the bond energy, manifested by the fact
that � /KB is almost a constant for the three short-range
MM2/MM3 potentials, as seen in Table II. For the long-
range MM2/MM3 potential, because the bond next to the
crack tip also supplies some restoring force, the value � /KB
for potential IV is slightly larger than those for the other
MM2/MM3 potentials. A quantitative analysis of the restor-
ing forces of the bonds near the crack tip was given by
Curtin.21

The athermal limits KA calculated for TB-G2 and
MTB-G2 further support that the peak force of the bond
governs the athermal limit KA. Since TB-G2 possesses a
higher peak force than MTB-G2, thus, KA for TB-G2 is
larger than that for MTB-G2. Table II also shows that the
true Griffith load always falls within KA and KB, i.e., KB
�KG�KA. For the two long-range potentials, potential IV
and MTB-G2, the difference between the athermal loads KA
and KB, and the true Griffith load is negligibly small. This
concludes that for long-range potentials, the true Griffith
load is a fairly accurate approximation for the athermal limit
governing bond breaking.

D. Load-mediated minimum-energy paths and activation
energy barriers

Once the two local energy-minimum configurations A and
B are identified at the same applied load KI

app, a discrete
MEP connecting the two local energy minima can be com-
puted using the NEB method. In our NEB calculations, the
elastic band consists of 18 equally spaced intermediate rep-
licas that are linearly interpolated from the two end images,
i.e., configurations A and B. Continuous MEPs are obtained
by polynomial fitting based on the discrete MEP.22 Since the
relative energetics of the initial and final configurations on
the elastic band is dependent on the applied load, the MEPs
are also load dependent.

Using potential II as an example, Fig. 5 shows the MEPs
at two different applied loads. Note that KI,N=0.126 is the
normalized true Griffith load for potential II. In the figure,
the symbols denote the calculated energies of replicas along
the MEPs, while the solid lines are the fitted curves. The
energy of configuration A is used as a reference for other
replicas. For replica i, the reaction coordinate si is defined as

si = li/lN, �10�

where li= �xi−x1� and lN= �xN−x1� are the Euclidean dis-
tances between the intermediate replica i and the first image
�configuration A�, and between the Nth replica �configuration
B� and the first, respectively. Thus, si runs from 0 �for con-
figuration A� to 1 �for configuration B�. The energy differ-

ence between the saddle point state and configurations A or
B defines the AEB. As expected, a higher applied load leads
to a lower �higher� AEB against bond breaking �healing�.

The quantification of AEBs allows us to determine the
athermal limits more accurately as compared with stability
analysis of crack-tip bond separation, as described in the
previous section. With computed AEBs at a series of applied
loads, a polynomial fitting and extrapolation of the barrier
versus load relations yield the athermal limits at which the
associated barriers vanish. As an example, Fig. 6 shows the
extrapolated curves for potential II for both bond breaking
and bond healing. The intersection of these two curves iden-
tifies the true Griffith load at which the barriers for bond
breaking and bond healing are the same. It shows that close
to the athermal limits, the energy barrier changes slightly
with load. The continuous decrease in the slope of the
barrier-load curve may be attributed to the elastic softening
at large strains, and will lead to a significant underestimation
�overestimation� of KI

+�KI
−� if using a simple scheme of linear

extrapolation. For potential II, the extrapolated data yield
KI,N

+ =0.227, which is slightly larger than KA,N, and KI,N
−

=0.067, which is slightly smaller than KB,N.

FIG. 5. �Color online� K-mediated minimum-energy paths of the
unit process of crack-tip bond breaking for potential II.

FIG. 6. �Color online� Activation energy barriers for bond
breaking and bond healing as a function of the normalized applied
K for potential II. The intersection of the two fitted curves identifies
the energy barrier at the true Griffith load. Curve extrapolation iden-
tifies the athermal limits for bond breaking and healing at which the
associated activation energy barriers vanish.
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IV. DISCUSSIONS

A. Kinetic rate of crack extension

The calculated AEBs, �Eact, can be utilized to estimate
the kinetic rate of crack growth,

v = d0f0 exp�−
�Eact�K�

kBT
� , �11�

where kB is Boltzmann’s constant, T is the temperature, and
f0 is the attempt frequency, typically on the order of 1013/ s.
If the Griffith energy-balance criterion is taken as the critical
condition of instantaneous crack extension, the underlying
assumption is that the local energy corrugation, as measured
by �Eact, is sufficiently small so that the success rate of
crack-tip bond breaking by thermal activation is high, thus
giving large v. However, as shown in our simulations, the
AEB could be very high depending on the characteristics of
the interatomic potentials. Consequently, the athermal load
could be much higher than the Griffith load. In such cases,
the Griffith energy-balance criterion is not accurate for pre-
dicting the onset of instantaneous crack extension.

B. Generalized fracture criterion

Our simulations have demonstrated that for long-range
potentials, the lattice trapping effect is insignificant and the
true Griffith load provides a fairly close estimate of the ather-
mal limit. In contrast, for materials exhibiting significant
lattice-trapping effect, the athermal limit governing local
bond instability is a better approximation of the fracture load
than the Griffith load. According to our numerical analysis,
the athermal limit �A for bond breaking is proportional to the
true Griffith load, thus

�A = �0�G � �
fP

�d0a
, �12�

where �0 is a scaling factor reflecting the lattice trapping
against bond breaking, and is approximately equal to 1.3 and
1.7, respectively, for TB-G2 and potential II. Note that for
sufficiently long cracks, the athermal load governing bond
breaking is proportional to the peak force of the potentials
and inversely proportional to �a. Hence, the approximation
in Eq. �12� holds since it is not accurate for short cracks �for
short cracks, the athermal limit is not inversely proportional
to �a�. Here, � is a material constant depending on the lattice
type and crystallographic orientation of the fracture path, and
can be numerically determined. For TB-G2, �
1.46. Thus,
a fracture criterion can be proposed to account for the crack-
size and lattice-trapping effects simultaneously:

� f = ��G, �13�

where

� = 
 1, 
 � 
0

�0, 
 � 
0.
� �14�

Note that for long cracks and materials characterized by
long-range potentials, the Griffith fracture stress is a close

estimate of the true Griffith load as well as the athermal load
for bond breaking. Thus, the Griffith formula is still a valid
onset condition for predicting crack propagation under these
conditions.

V. CONCLUDING REMARKS

We have studied the applicability of the Griffith criterion
for predicting fracture of crystal lattice via detailed atomistic
and multiscale analyses of bond breaking and healing at the
crack tip. We have developed computational schemes for ato-
mistically determining the true Griffith load for both the
finite-sized and semi-infinite crack models. For a model sys-
tem of monolayer lattice, we found that below a characteris-
tic crack size of about ten lattice spacings, the Griffith frac-
ture stress markedly overestimates the true Griffith load
because the energy release rate estimate provided by the con-
tinuum solution becomes inaccurate.

The stability analysis of crack-tip bond separation yields
an estimate of the athermal loads K+ and K− at which the
crack tip becomes locally unstable to bond breaking and
healing, respectively. We show that the critical load K+ gov-
erning bond breaking depends on the peak force of the bond,
while K− governing bond healing depends on the descending
portion of the force-separation relations. The lattice-trapping
strengths calculated for the MM2/MM3 potentials show a
clear dependence on the interaction range of the potential:
with increasing interaction range, the lattice-trapping
strength decreases.

The local corrugation in the energy landscape of the
cracked lattice causes the difference between the true Griffith
load and the athermal load of instantaneous fracture, result-
ing in the lattice-trapping effect. Using the reaction pathway
calculations, load-mediated minimum-energy paths were de-
termined, and the activation energy barriers were calculated.
Polynomial fitting and extrapolation of the barrier versus
load curve provide a more accurate scheme for determining
the lattice-trapping strength. The activation energy barriers
can also be used to estimate the kinetic rate of crack exten-
sion.

A generalized fracture criterion accounting for both the
lattice-trapping effect and crack-size effect is established by
considering two typical regimes of interaction range of the
potentials. For long-range interatomic potentials, lattice trap-
ping of bond breaking at the crack tip is negligible and the
true Griffith load is a fairly accurate onset condition for crack
extension. We emphasize that the true Griffith load satisfies
the thermodynamic energy balance, which is very different
from the Griffith fracture stress estimated by Eq. �2� when
the crack length is less than ten lattice spacings. For cracks
longer than ten lattice spacings, the true Griffith load can be
approximated by the Griffith fracture stress. Thus, the crack-
size effect is naturally taken into account. In contrast, for
short-range interaction potentials, the lattice-trapping effect
is more significant, so that the athermal limit for bond break-
ing yields a more appropriate onset condition for instanta-
neous lattice fracture.

Besides providing important physical insights into brittle
fracture of crystal lattices by cleavage bond ruptures, the
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computational schemes developed in this work are general
and can be applied to study the energetics and kinetics of
ductile fracture involving dislocation nucleation or motion at
a crack tip. Brittle fracture by bond breaking generally pre-
vails at low temperatures. There exists a critical temperature
at which ductile fracture by dislocation motions prevails
and brittle-to-ductile transition occurs. A study of such phe-
nomena in systems of flat monolayer lattices and curved
monolayers of single-walled carbon nanotubes is currently
under way.
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