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Atomistic Configurations and Energetics of Crack Extension in Silicon
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We report the first atomistic determination of the minimum energy path for a series of bond ruptures
to advance a crack front. Saddle-point configurations on (111) cleavage planes in Si reveal a steplike
distribution of atomic displacements, implying a kink mechanism which is known to control dis-
location mobility. Manifestations of lattice trapping and directional cleavage anisotropy are further
elucidated.
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FIG. 1. Schematic of a sharp crack advancing by the double-
kink mechanism.
A fundamental question in understanding fracture at
the atomic level is how a sharp crack advances by a
sequence of bond breaking events [1–4]. Such insights
would elucidate a wide range of phenomena, such as slow
crack growth and environmental effects [5,6]. In princi-
ple, atomistic simulation can address this issue because
individual bond rupture as well as the cumulative effects
of several bond breaking events can be followed in detail.
However, most studies to date [7–14] have been con-
cerned with simulations in the plane-strain condition, in
which case crack advancement is effectively treated as a
two-dimensional (2D) problem.

In this work we apply a reaction pathway analysis to
determine the minimum energy path (MEP) [15] for bond
ruptures along 3D, atomically sharp crack fronts in Si.
Treating this path as a reaction coordinate, we investigate
the atomic configurations as well as the energetics of the
crack front during the advancement of the crack tip by
one atomic spacing. We find the crack-front extension
occurs through a kink mechanism [1], the nucleation of
a double kink followed by the spreading of this kink pair
across the front. This scenario is essentially the same as
the mechanism for a dislocation to glide in the diamond
cubic lattice of Si [16–18].We are able to extract activation
barriers in terms of kink nucleation and migration ener-
gies. Our investigation also leads to manifestations of
lattice trapping [7] and directional cleavage anisotropy
[12] effects beyond those discussed in 2D simulations.

We analyze initially straight cleavage cracks on the
(111) plane with their fronts along either �1�10� or �11�2�
directions, denoted as �111��1�10� and �111��11�2�, respec-
tively (see Fig. 1). The simulation cell is a cylinder cut
from the crack tip [19], with a radius R � 80 �A. Atoms
within 5 Å of the outer surface are assigned a prescribed
displacement field given by the anisotropic linear elastic
Stroh solution [20,21]. To bring out the 3D nature of
crack-front propagation, the cell length along the cylin-
der axis, l, is taken to be as long as it is computationally
feasible; in our case, 20 unit cells. Periodic boundary
0031-9007=04=93(20)=205504(4)$22.50
condition (PBC) is imposed along the axial direction.
Because the 12-atom unit cell is orthorhombic, the cell
length l and the number of atoms in the cell, N, are
different for the two crack orientations, l�76:8 �A and
N�77200 and l�133:0 �A and N�133760 for the
�111��1�10� and �111��11�2� cracks, respectively. For both
orientations, the x3 axis is taken along the crack front and
x2 axis is �111�. Thus, crack extension will be in the x1
direction under mode-I loading at a stress intensity factor
KI.

We use the Stillinger-Weber (SW) potential [22] whose
cleaved f111g surface (shuffle plane) is the ideal 1� 1
type without reconstruction. The corresponding relaxed
surface energy �s is 1:45 J=m2. We have investigated the
effect of interatomic potential on the calculated lattice
trapping barriers by repeating all the calculations using
the environment-dependent interatomic potential (EDIP)
[23] to find qualitatively the same results.

Starting with the �111��1�10� crack, we determine the
Griffith load KIG at which the system energy change is
zero when the crack extends in the �11�2� direction by one
atomic spacing. KIG can be estimated from the Griffith
criterion [20,21] using the elastic constants and relaxed
surface energy �s determined with the Stillinger-Weber
 2004 The American Physical Society 205504-1



FIG. 2 (color). Energetics and geometry of crack-front bond
ruptures. (a) The MEPs for the �111��1�10� crack (blue upper
curve) and the �111��11�2� crack (green lower curve) at the
respective Griffith loads; (b) distribution of the opening dis-
placement across the (111) cleavage plane for the �111��1�10�
crack with ten broken bonds, normalized by the interplanar
spacing d0 � 2:35 �A; (c) same as (b), except for the �111��11�2�
crack.
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potential, KIG � 0:656 MPa
����

m
p

. By direct atomistic
simulation, we obtain KIG � 0:646 MPa

����

m
p

, the agree-
ment being a measure of our self-consistency.

Finding the MEPs and associated activation energies
for bond rupture requires probing the potential energy
surface of the system in a 3N-configurational space under
an applied load KI (boundary displacements constrained).
We apply the Nudged Elastic Band method (NEB) [15]
for sampling reaction pathways. Two local energy minima
on the same potential energy surface mediated by KI are
identified by energy minimization; these correspond to
equilibrium configurations before and after uniform
crack extension in the x1 direction by one atomic spacing
(both would have the same energy at KIG). A discretized
elastic band consisting of a number of system replicas is
then employed to connect the two states.With appropriate
relaxation [15], the elastic band converges to the MEP.

For the present simulation cell with 20 bonds along the
initially straight crack front, the most energetically fa-
vored pathway for the front to advance by one atomic
spacing is found to involve the breaking of 20 bonds
sequentially. Adopting this sequence as a reaction coor-
dinate, we determine the system energy along this path.
We show in Fig. 2(a) (blue upper curve) the energy change
in going to the final configuration, also a straight crack
front and a local energy minimum. The normalized re-
action coordinate s is defined such that each integer
number s labels a locally equilibrated state with s broken
bonds on the crack front. Between s and s
 1, the coor-
dinate denotes a normalized hyperspace arc length along
the MEP for breaking the �s
 1�-th bond. Each circle
gives the energy, relative to the equilibrium state of a
straight crack front, of a metastable crack front with s
broken bonds. The barrier between two adjacent circles
shows the energy variation along the MEP of breaking
one more bond: s ! s
 1. For clarity, we use an inter-
polated curve to represent the calculated energies of 15
relaxed replica configurations [15] between the two ad-
jacent circles. One sees in Fig. 2(a) the energy change is a
series of barriers, each describing a particular bond rup-
ture, and is intrinsic to the lattice structure and the nature
of bonding, superposed on a smooth profile given by the
envelope curve connecting the red circles. Notice that at
an applied load equal to the Griffith value of KIG, the
initial (s � 0) and final (s � 20) configurations have the
same energy by definition. If the loading is greater or less
than KIG, the final configurations would have energy
lower or higher than the initial configuration.

Before discussing the MEP further, we show in
Fig. 2(b) the profile of the crack front for a state of local
energy minimum with ten broken bonds (s � 10). To
visualize the discrete data from atomistic simulation, a
continuous field of crack opening displacement across the
two adjacent (111) cleavage planes is rendered by cubic-
spline interpolation of the opening displacements at dis-
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crete lattice sites. Two rather sharp kinks can be seen on
each side of the crack front. Thus the energy variation
shown in Fig. 2(a) can be interpreted in terms of the
energetics of kink-pair formation and kink migration.
We write the total energy change �E of the system (in
reference to a straight crack front) for states on the
envelope curve as the sum of two contributions, the
elastic interaction Eel between two kinks of opposite
signs separated by dK and twice the self energy EK of
an individual kink. Thus, for the ideal situation of a kink
pair embedded in an infinitely long, perfectly straight
crack front, one has

�E�dK� � Eel�dK� 
 2EK; (1)

where dK is the double-kink separation. In Eq. (1),
Eel�dK� will asymptotically vanish as dK increases. EK,
containing all the remaining atomistic energetic informa-
tion, can be interpreted as the formation energy of an
205504-2
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FIG. 3. Activation energy barrier �Eact as a function of load
KI for breaking the first bond at a straight crack front for two
crack orientations: symbols represent the calculated data points
and solid lines are the polynomial extrapolations. The athermal
loads of instantaneous fracture, which can be determined from
the intersections between the solid lines and dashed line, are
Km

I � 1:0 MPa
����

m
p

for the �111��1�10� crack and Km
I �

0:88 MPa
����

m
p

for the �111��11�2� crack, respectively.
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isolated kink. Remember that ‘‘bond-to-bond roughness’’,
as shown in Fig. 2(a), needs to be superimposed onto
Eq. (1) to represent the entire energy path.

From the upper curve in Fig. 2(a), the self energy EK is
estimated from the plateau portion of the envelope curve
to be about 0.80 eV. This value is very close to an estimate
of 0.81 eV using a larger simulation cell consisting of 30
unit cells along the crack front. Figure 2(a) shows that
increasing dK beyond l=2 will cause �E to decrease. This
is due to the attractive image interactions associated with
the use of periodic boundary condition. Fortunately, the
numerical results show that Eel�dK� is a rapidly decreas-
ing function with dK, so even in the presence of image
interactions we can extract EK to be around 0.8 eVat KIG.

In our interpretation of the double-kink mechanism of
crack-front advancement, the energy barriers to bond
rupture become barriers to kink migration. Our calcula-
tion shows that the barriers decrease, from 0.86 eV for
breaking the first bond to 0.44 eV for breaking the tenth
bond. As the number of broken bonds, i.e., dK, increases,
the migration barrier approaches an asymptotic value
corresponding to the activation energy for the migration
of an isolated kink, denoted by WK, which can be esti-
mated from the barrier for breaking the tenth bond,
0.44 eV. This is a rather substantial secondary energy
barrier. As a result, motion of the crack tip can be
expected to be sluggish.

As the applied load KI increases beyond KIG, the po-
tential energy landscape of the system will be biased
toward a forward transition. At the athermal critical
load, denoted by Km

I , the activation energy for breaking
the first bond at the straight crack front vanishes.
Examination of the computed MEPs at different loads
indicates that the barrier for breaking the first bond
decreases the slowest among all the barriers. Hence,
beyond the critical load Km

I , kink-pair nucleation as
well as subsequent kink migrations leading to cleavage
fracture will occur spontaneously without the aid of
thermal fluctuations.

To determine Km
I , we increase the loading incremen-

tally above KIG. When the load reaches KI �
0:90 MPa

����

m
p

, we find it no longer possible to obtain a
relaxed initial state geometrically similar to the configu-
rations at lower loads; the system tends to relax to another
local energy minimum corresponding to a different de-
formation mode, amorphization by formation of new
crack-tip ring structures. Since our interest is to study
the transition pathway for cleavage fracture on the (111)
plane, we leave the issue of competition among different
deformation modes to a future investigation. Nonetheless,
we can estimate Km

I by extrapolating from the barrier
heights obtained at lower loads, as shown in Fig. 3. The
value of Km

I obtained in this manner is about 1:0 MPa
����

m
p

.
In terms of the ratio Km

I =KIG, we can define a lattice
trapping range, an effect intrinsic to the discrete nature
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of a crystal lattice [7]. Our value of 1.55 is of course
specific to the interatomic interaction model used in this
work.

Although the f111gh1�10i crack propagating in the h11�2i
direction is the most frequently studied, fractography
observations of the cleavage surface indicate that a
f111g cleavage crack prefers to propagate in the h110i
direction [24]. The preference of propagation direction,
called propagation anisotropy, has been explained by
comparing orientation-dependent lattice trapping ranges
of 2D crack configurations [12,13]. Here, we point to a
different manifestation of this effect in the energies of
kink-pair formation and migration on a crack front.

Consider the �111��11�2� crack extending along the
��110� direction. The Griffith load KIG for this orienta-
tion, determined from direct atomistic calculation, is
0:643 MPa

����

m
p

, compared to a theoretical value of
0:654 MPa

����

m
p

. The lower curve in Fig. 2(a) shows the
MEP of sequentially breaking 20 bonds along the
�111��11�2� crack front. Comparing to the earlier result
for the �111��1�10� crack, we find significantly different
kink-pair formation energy at about 0.22 eV versus 0.8 eV,
while the migration energies are similar.

As the applied load increases by about the same ratio
beyond KIG, the activation energy required to extend the
�111��11�2� crack is consistently lower than that for the
�111��1�10� crack. To estimate the lattice trapping range for
the former, we again obtain the athermal load by extrapo-
lation. As shown in Fig. 3, a value of Km

I � 0:88 MPa
����

m
p

is obtained, which then leads to Km
I =KIG � 1:37, a nar-
205504-3
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rower lattice trapping range for the second crack
orientation.

It is instructive to correlate the difference in lattice
trapping range with details of the atomic configura-
tions of the crack front. As shown in Fig. 2(c) for the
�111��11�2� crack, both the leading and trailing edges of
the crack front have a zigzag profile, which indicates that
the second array of bonds adjacent to the crack front also
have relatively large opening displacements. This config-
urational feature is not present in the smooth profile of the
�111��1�10� crack. The difference in crack-front displace-
ments can be attributed to the bond densities along differ-
ent directions on the (111) plane. Assuming the linear
elastic solution is approximately correct, the bond open-
ing displacement (in the x2 direction) should vary sensi-
tively with the distance (in the x1 direction) from the
crack front. The close-packed arrangement of atoms
along the x1 direction for the �111��11�2� crack means a
smaller distance for the second array of bonds, and con-
sequently larger equilibrium opening displacements and a
more zigzag profile. Moreover, we believe this is consis-
tent with the crack having a smaller kink formation
energy in that one can expect the energy cost of barrier
crossing by the crack-front kink to become smaller if
tensile opening displacements before and after the cross-
ing are closer.

We have presented above a reaction pathway analysis
showing that a cleavage crack in Si advances via the kink
mechanism, a result which we believe applies to any
lattice with significant secondary Peierls barrier. That
kinks should play a central role in crack-front mobility
is understandable considering the structural similarity
between the crack front, as the core of a crack tip, and
the core of a dislocation line, along with the fact it is
widely recognized that in Si, dislocations move by the
nucleation and migration of kink pairs [16–18]. A pre-
vious study, using simplified models, has emphasized the
role of kinks in chemically assisted fracture [2].
Exploiting the analogy between the crack front and dis-
location core in an explicit and operational fashion, as
suggested by our results, should be useful for future
studies of deformation physics of both types of defects.

We conclude by commenting that in contrast to the
present results, crack-tip evolution in the ductile mode
is quite different. We have recently shown that in Cu, a
reaction pathway analysis gives a detailed scenario of the
emission of a dislocation loop from the crack front [19]. It
is reassuring that this fundamental aspect of fracture
behavior should be governed by both local atomic struc-
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ture and interatomic bonding, effects that the present
atomistic investigation is capable of probing.
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